K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Ta có:

  \(K=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

     \(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)

     \(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)

      \(=\frac{1}{6}.\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)

23 tháng 3 2017

K = \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{755}+\frac{1}{1147}=0,1621963429\)

\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{755}+\frac{1}{1147}\)

\(=\frac{1}{7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)

\(=\frac{1}{6}\left(1-\frac{1}{37}\right)\)

\(=\frac{1}{6}.\frac{36}{37}\)

\(=\frac{6}{37}\)

17 tháng 5 2019

\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{755}+\frac{1}{1147}\)

\(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)

\(=\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{35.37}\right)\)

\(=\frac{1}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)

\(=\frac{1}{6}.\left(1-\frac{1}{37}\right)\)

\(=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)

~ Hok tốt ~

17 tháng 6 2015

\(4B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{7^2}\)

Ta lại có: \(4B-1\le\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}=1-\frac{1}{7}=\frac{6}{7}

18 tháng 3 2017

minh cung chiu

19 tháng 3 2017

P = 1/4 + 1/16 + 1/36 + .. + 1/196 = 1/2² + 1/4² + 1/6² +...+ 1/12² + 1/14² 

xét tổng quát với số nguyên dương k ta có: 
(2k-1)(2k+1) = 4k² - 1 < 4k² = (2k)² => 1/(2k)² < 1/(2k-1)(2k+1) 
=> 2/(2k)² < 2 /(2k-1)(2k+1) = 1/(2k-1) - 1/(2k+1) (*) 

ad (*) cho k từ 1 đến 7 
2/2² < 1/1 - 1/3 
2/4² < 1/3 - 1/5 
... 
2/12² < 1/11 - 1/13 
2/14² < 1/13 - 1/15 
+ + cộng lại + + 
2/2² + 2/4² +...+ 2/14² < 1/1 - 1/15 < 1 
=> 2(1/2² + 1/4² +..+ 1/14²) < 1 => P < 1/2 (đpcm)

\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)< \frac{1}{4}\left(1+1\right)=\frac{1}{2}\)

#ĐinhBa

7 tháng 3 2016

\(có\)  \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\approx1,4\)

\(mà\)  \(\frac{1}{2}=1,5\)

\(=>\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}<\frac{1}{2}\)

7 tháng 3 2016

\(\frac{1}{4}+\frac{1}{16}+...+\frac{1}{196}\)\(<\frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+...+\frac{1}{14^2-1}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{15}\right)<\frac{1}{2}\) \(\left(đpcm\right)\)

12 tháng 2 2019

\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+...+\frac{1}{31\cdot37}\)

\(=\frac{1}{6}\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+\frac{6}{13\cdot19}+...+\frac{6}{31\cdot37}\right)\)

\(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...-\frac{1}{31}-\frac{1}{37}\right)\)

\(=\frac{1}{6}\left(1-\frac{1}{37}\right)\)

\(=\frac{1}{6}\cdot\frac{36}{37}=\frac{6}{37}\)

12 tháng 2 2019

Tổng cần tính bằng:\(\frac{1}{1.7}\)+\(\frac{1}{7.13}\)+\(\frac{1}{13.19}\)+\(\frac{1}{19.25}\)+\(\frac{1}{25.31}\)+\(\frac{1}{31.37}\)=(\(\frac{1}{1}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{13}\)+...+\(\frac{1}{31}\)\(\frac{1}{37}\)):3 =(\(1\)-\(\frac{1}{37}\)):3=\(\frac{12}{37}\)

                                

                              

18 tháng 7 2015

A=1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147

A=1/(1.7)+1/(7.13)+1/(13.19)+...+1/(31...  

A=(1/6)*( 1 - 1/7 + 1/7 - 1/13 +... +1/31-1/37)  

A=(1/6)*(1-1/37)  

A=(1/6)*(36/37)  

A=6/37