K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

2) Giải :

A = \(\dfrac{2\times\dfrac{\sin x}{\sin x}+3\times\dfrac{\cos x}{\sin x}}{5\times\dfrac{\cos x}{\sin x}+6\times\dfrac{\sin x}{\sin x}}=\dfrac{2+3\cot x}{5\cot x-6}=\dfrac{2+3\times2}{5\times2-6}=2\)

6 tháng 10 2017

1) \(\sin^2x+\cos^2x=1\Rightarrow\cos x=1-\sin^2x=1-\left(\dfrac{2}{3}\right)^2=\dfrac{5}{9}\)

P = ( 1-3cos2a)(2+3cos2a)

= 2 + 3cos2a - 6cos2a - 9\(cos^22a\)

Thay cos = 5/9 vào pt rồi giải bpt là được

27 tháng 4 2020

Ta có : \(\sin^2a+\cos^2a=1\Rightarrow\cos a=\frac{\sqrt{21}}{5}\)

Ta có : \(\frac{\cot a-\tan a}{\cot a+\tan a}=\frac{\frac{\cos a}{\sin a}-\frac{\sin a}{\cos a}}{\frac{\cos a}{\sin a}+\frac{\sin a}{\cos a}}\\ =\frac{\frac{\frac{\sqrt{21}}{5}}{\frac{2}{5}}-\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}}{\frac{\frac{\sqrt{21}}{5}}{\frac{2}{5}}+\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}}=\frac{17}{25}=0,68\)

14 tháng 3 2021

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).

13 tháng 1 2021

n tiến tới đâu bạn?

13 tháng 1 2021

n tiến đến \(+\infty\) nhé

Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho

Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)

Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1

Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)

26 tháng 9 2021

Mình cảm ơn bạn ạ.

Tại vì thật ra mình cũng biết là cái tử nó phải bằng 0 rồi, nhưng cho bằng 0 xong mình không biết tính \(a^2+b^2\) thế nào.

Mong bạn giúp đỡ ạ !