Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)
b.
Tích có 100 thừa số
=> n = 100
\(\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times\left(100-100\right)\)
\(=\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times0\)
\(=0\)
2.
a.
\(135\times789789-789\times135135=1001\times\left(135\times789-789\times135\right)=1001\times0=0\)
b.
\(\left(28\times9696-96\times2828\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left[101\times\left(28\times96-96\times28\right)\right]\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left(101\times0\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\)
3.
a.
\(\left[\left(x+32\right)-17\right]\times2=42\)
\(\left(x+32\right)-17=\frac{42}{2}\)
\(\left(x+32\right)-17=21\)
\(x+32=21+17\)
\(x+32=38\)
\(x=38-32\)
\(x=6\)
b.
\(125+\left(145-x\right)=175\)
\(145-x=175-125\)
\(145-x=50\)
\(x=145-50\)
\(x=95\)
Ta có các số trừ bên trong ngoặc chạy theo dãy từ 1 tới n.
Ta thấy quy luật: Thừa số thứ 1 thì số trừ là 1
Thừa số thứ 2 thì số trừ là 2
...
Thừa số thứ 101 thì số trừ là 101
Vậy n là 101
=> Ta có: [100-1]x[100-2]x...x[100-100]x[100-101]
= [100-1]x[100-2]x...x0 x[100-101]
=0
Vậy [100-1]x[100-2]x[100-3]x...x[100-n] = 0
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(< =>\frac{128}{256}+\frac{64}{256}+\frac{32}{256}+\frac{16}{256}+\frac{8}{256}+\frac{4}{256}+\frac{2}{256}+\frac{1}{256}\)
\(< =>\frac{128+64+32+16+8+4+2+1}{256}\)
\(< =>\frac{255}{256}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(< =>\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< =>\frac{1}{1}-\frac{1}{100}\)
\(< =>\frac{99}{100}\)
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
\(< =>\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(< =>\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\)
\(< =>\frac{1}{100}\)
mk chuc ban hoc tot nhe :))
\(1,\\ a,\Leftrightarrow4^{5-x}=4^2\Leftrightarrow5-x=2\Leftrightarrow x=3\\ b,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x+1=3\Leftrightarrow x=2\\ 2,\\ a,3^{100}=\left(3^2\right)^{50}=9^{50}\\ b,2^{98}=\left(2^2\right)^{49}=4^{49}< 9^{49}\\ c,5^{30}=5^{29}\cdot5< 6\cdot5^{29}\\ d,3^{30}=\left(3^3\right)^{10}=27^{10}>8^{10}\\ 4,\\ a,\Leftrightarrow5\left(x-10\right)=10\\ \Leftrightarrow x-10=2\Leftrightarrow x=12\\ b,\Leftrightarrow3\left(70-x\right)+5=92\\ \Leftrightarrow3\left(70-x\right)=87\\ \Leftrightarrow70-x=29\\ \Leftrightarrow x=41\\ c,\Leftrightarrow16+x-5=315-230=85\\ \Leftrightarrow x=74\\ d,\Leftrightarrow2^x-5+74=707:\left(16-9\right)=707:7=101\\ \Leftrightarrow2^x=32=2^5\\ \Leftrightarrow x=5\)