K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Diện tích hình binh hành là 90\(\sqrt{3}\) (cm2)

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

18 tháng 8 2021

 

 

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm,

Kẻ

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

                                                                            Chúc bạn học tốt , bạn nhớ cho mình 1 like nhé !

 

 

Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Suy ra:

 

Trong tam giác vuông ADH, ta có:

 

Vậy:

(cm2).

18 tháng 8 2021

Tham khảo:

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm,\(\widehat{D}\)\(=75^0\)

Kẻ AH ⊥ CD, BK ⊥ CD 

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Suy ra:  \(DH=\dfrac{CD-HK}{2}=\dfrac{18-12}{2}=3\) ( cm ) 

Trong tam giác vuông ADH, ta có:

\(AH=DH.tgD=3.tg75^0\approx11,196\) ( cm ) 

Vậy:  \(S_{ABCD}=\dfrac{AB+CD}{2}.AH=\dfrac{12+18}{2}.11,196=167,94\) ( cm\(^2\) )

1 tháng 9 2020

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm, D^=75∘

Kẻ AH⊥CD,BK⊥CD

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Suy ra:

DH=CD–HK2=18–122=3(cm)

Trong tam giác vuông ADH, ta có:

AH=DH.tgD=3.tg75∘≈11,196(cm)

Vậy:

SABCD=AB+CD2.AH≈12+182.11,196=167,94 (cm2).

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)