K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

Bài 2

a . \(\sqrt{x-1}=3\Leftrightarrow x-1=9\Leftrightarrow x=10\)

b . \(\sqrt{x^2-6x+9}=1\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\Leftrightarrow x-3=1\Leftrightarrow x=4\)

c . \(\sqrt{25x^2-10x+1}=5\Leftrightarrow\sqrt{\left(5x-1\right)^2}=5\Leftrightarrow5x-1=5\Leftrightarrow x=\frac{6}{5}\)

20 tháng 6 2019

Bài 1

\(\sqrt{2}+\sqrt{3}+\sqrt{8}+\frac{\sqrt{16}}{\sqrt{2}}+\sqrt{3}+\sqrt{4}=\sqrt{2}+2\sqrt{3}+2\sqrt{2}+2\sqrt{2}+2\)

\(=5\sqrt{2}+2\sqrt{3}+2\)

20 tháng 6 2019

a) \(ĐKXĐ:x\ge1\)

\(\sqrt{x-1}=3\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=3^2\)

\(\Leftrightarrow x-1=9\)

\(\Leftrightarrow x=10\)

Vậy nghiệm duy nhất của pt là 10.

b)\(ĐKXĐ:x\ge3\)

 \(\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow x-3=1\)

\(\Leftrightarrow x=4\)

Vậy nghiệm duy nhất của pt là 4

20 tháng 6 2019

\(a,\sqrt{x-1}=3\)\(\text{ĐKXĐ: }x\ge1\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=3^2\)

\(\Leftrightarrow|x-1|=9\)

\(\Leftrightarrow x-1=\pm9\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\text{(thỏa mãn ĐKXĐ)}\\x=-8\text{(không thỏa mãn ĐKXĐ)}\end{cases}}\)

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)

\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)

\(=\sqrt{2}\)

 

d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)

\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)

\(=\sqrt{2}\)