K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

B1
a)
\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{28\cdot31}\\ =\dfrac{1}{3}\cdot\dfrac{3}{1\cdot4}+\dfrac{1}{3}\cdot\dfrac{3}{4\cdot7}+\dfrac{1}{3}\cdot\dfrac{3}{7\cdot10}+...+\dfrac{1}{3}\cdot\dfrac{3}{28\cdot31}\\ =\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{31}\right)\\ =\dfrac{1}{3}\cdot\dfrac{30}{31}\\ =\dfrac{10}{31}\)
b)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\dfrac{2}{1\cdot3}+\dfrac{5}{2}\cdot\dfrac{2}{3\cdot5}+\dfrac{5}{2}\cdot\dfrac{2}{5\cdot7}+...+\dfrac{5}{2}\cdot\dfrac{2}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)
B2
\(A=\dfrac{10^5+4}{10^5-1}=\dfrac{10^5-1+5}{10^5-1}=\dfrac{10^5-1}{10^5-1}+\dfrac{5}{10^5-1}=1+\dfrac{5}{10^5-1}\\ B=\dfrac{10^5+3}{10^5-2}=\dfrac{10^5-2+5}{10^5-2}=\dfrac{10^5-2}{10^5-2}+\dfrac{5}{10^5-2}=1+\dfrac{5}{10^5-2} \)
\(10^5-1>10^5-2\Rightarrow\dfrac{5}{10^5-1}< \dfrac{5}{10^5-2}\Rightarrow1+\dfrac{5}{10^5-1}< 1+\dfrac{5}{10^5-2}\Leftrightarrow A< B\)

14 tháng 5 2017

B3
\(A=\dfrac{n-2}{n+3}\)
Để \(A\) có giá trị nguyên thì \(n-2⋮n+3\)
\(n-2=n+3+\left(-5\right)⋮n+3\Rightarrow-5⋮n+3\Rightarrow n+3\inƯ\left(-5\right)\)
\(Ư\left(-5\right)=\left\{-5;-1;1;5\right\}\)

n+3 -5 -1 1 5
n -8 -4 -2 2

Vậy \(n\in\left\{-8;-4;-2;2\right\}\)

\(B=\dfrac{3n+1}{n-1}\)
Để \(A\) có giá trị nguyên thì \(3n+1⋮n-1\)
\(3n+1=3n-3+4⋮n-1\Leftrightarrow3\cdot\left(n-1\right)+4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
n-1 -4 -2 -1 1 2 4
n -3 -1 0 2 3 5

Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)

6 tháng 3 2018

giúp mình nha !

11 tháng 4 2017

mình làm câu 4 nha

Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)

=>(2n+1) : d và (3n+2) : d

=>3.(2n+1) :d và 2.(3n+2): d

=>(6n+3) :d và (6n+4) : d

=> ((6n+4) - (6n+3)) : d

=>1 :d => d=1

Vì d là ước chung của 2n+1/3n+2

mà d =1 => ƯC(2n+1/3n+2) =1

Vậy 2n+1/3n+2 là phân số tối giản

Tick mình nha bạn hiền .

11 tháng 4 2017

câu 5 mình mới nghĩ ra nè ( có gì sai thì bạn sửa lại giúp mình nha)

Ta có : A=\(\dfrac{n+2}{n-5}\)

A=\(\dfrac{n-5+7}{n-5}\)

A=\(\left[\left(n-5\right)+7\right]\) : (n-5)

A= 7 : (n-5)

=> (n-5) thuộc Ư(7)=\(\left\{1;-1;-7;7\right\}\)

Suy ra :

n-5 =1=> n= 6

n-5= -1 =>n=4

n-5=7=>n=12

n-5= -7 =>n= -2

Vậy n = 6 ;4;12;-2

Mấy dấu chia ở câu 4 là dấu chia hết đó nha ( tại mình không biết viết dấu chia hết ).

Tick mình nha bạn hiền.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và Bb. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyênd. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​...
Đọc tiếp

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và B

b. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2

c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyên

d. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​ trị​ nguyên

Bài 2:

a. tính​ tổng​ 20 số​ hạng​ đ​ầu​ tiên​ của​ dãy​ sau : 1 phần​ 1.2 , 1 phần​ 2.3 , 1 phần 3.4 , ...

b. tính​ tổng​ 5 số​ hạng đ​ầu​ tiên​ của​ dãy​ số​ sau : 5 phần​ 6 , 5 phần​ 66 , 5 phần​ 176 , 5 phần 336 ,.......

c. cho biểu​ thức​ : A = 5 mũ​ 2 phần​ 1.6 + 5 mũ​ 2 phần​ 6.11 +...+ 5 mũ​ 2 phần​ 26.31.       Chứng​ tỏ A > 1

2
4 tháng 5 2018
1/a, -Ta có: $B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$ -Vậy: B
4 tháng 5 2018

1/a,

-Ta có: 

$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$

-Vậy: B<A

b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$

$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$

$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$

$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$

$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$

12 tháng 8 2019

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

1,Chứng minh rằng :a,1.3.5....39/21.22.23.....40 = 1/2^20                                             b,1.3.5....(2n-1)/(n+1).(n+2).(n+3)..2n = 1/2^n với n thuộc N*2,a, Chứng minh rằng với mọi stn n thì phân số 21n +4/14n+3 là phân số tối giản b, Tìm tất cả các stn n để phân số n +3/n-12 là phân số tối giảnc, Tìm các stn n để phân số 21n+3/6n+4 rút gon đc3, Cho p=n+4/2n-1 (với n thuộc Z) .Tìm các giá trị của n để p là số...
Đọc tiếp

1,Chứng minh rằng :

a,1.3.5....39/21.22.23.....40 = 1/2^20                                             b,1.3.5....(2n-1)/(n+1).(n+2).(n+3)..2n = 1/2^n với n thuộc N*

2,a, Chứng minh rằng với mọi stn n thì phân số 21n +4/14n+3 là phân số tối giản 

b, Tìm tất cả các stn n để phân số n +3/n-12 là phân số tối giản

c, Tìm các stn n để phân số 21n+3/6n+4 rút gon đc

3, Cho p=n+4/2n-1 (với n thuộc Z) .Tìm các giá trị của n để p là số nguyên tố 

4,Tìm các số nguyên n để các phân số sau nhận giá trị số nguyên

a,12/3n-1                           b,2n+3/7                    c, n+3/2n-2

5,Tìm các số tự nhiên n đẻ các phân số sau tối giản

a,2n+3/4n+1                     b, 3n+2/7n+1              c,2n+7/5n+2

6,chứng minh rằng mọi phân số có dạnh:

a,n+1/2n+3 (với n là số tự nhiên )                                                           b,2n+3/3n+5(với n là stn) đều là phân số tối giản

7,Tìm các số nguyên x,y biết 7/x=y/21=-42/54

8,tìm một phân số có mẫu là 15 biết rằng giá trị của nó ko thay đổi khi lấy tử trù đi 2 và lấy mẫu nhân với 2

9,So sánh 

a,2015.2016 -1/2015.2016 và 2014.2015-1/2014.2015

b,53/57 bà 531/571

c,5.(11.13 -22.26)/22.26-44.52 và 138^2-690/137^2-548

d,25/26 và 25251/26261

e,3535.232323/353535.2323;3535/3534 và 2323/2322

10,cho a,b,m thuộc N*. Hãy so sanh  :a+m/b+m với a/b

11, hãy so sánh các phân số:A=54.107-53/53.107+54                     B=135.269-133/134.269+135

 

 

1
13 tháng 2 2018

ai giúp mình đi mình cần gấp