K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2023

Mình làm câu 2 trước nhé:

đkxđ: \(\dfrac{1}{2}< x\le2\)

 Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\)     (1)

 Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\)  (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)

 Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\) 

 Vậy pt đã cho có nghiệm duy nhất \(x=1\)

22 tháng 4 2023

Không=))

13 tháng 2 2022

\(\left(x\ne-y;x>\dfrac{y}{2}\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7-\left(x+y\right)}{x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7}{x+y}=2\end{matrix}\right.\)

\(đặt:\dfrac{1}{\sqrt{2x-y}}=a>0;\dfrac{1}{x+y}=b\)

\(\Rightarrow\left\{{}\begin{matrix}4a-21b=\dfrac{1}{2}\\3a+7b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\left(tm\right)\\b=\dfrac{1}{14}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x-y}}=\dfrac{1}{2}\\\dfrac{1}{x+y}=\dfrac{1}{14}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)(thỏa)

9 tháng 8 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)

Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)

\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)

Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)

\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)

SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)

b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)

..... giải nốt tiếp ra x=1

c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

ĐK:....

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)

\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)

\(=\left(x-8\right)^2+2\ge2\)

Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)

\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)

NV
26 tháng 2 2021

\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)

\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)

NV
26 tháng 2 2021

2.

ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)

\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)

\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)

\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)

\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)

\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)

\(\Leftrightarrow7\left|x-1\right|=35\)

\(\Leftrightarrow\left|x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)

c) ĐKXĐ: \(x\ge0\)

Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow x-1=x+\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-6=-1\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25(nhận)

8 tháng 7 2021

 Em cảm ơn ạ ❤️❤️❤️

5 tháng 10 2021

\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)