Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}\)
\(=\frac{1.2.3.4..5.6...\left(2n-1\right).2n}{\left(2.4.6....2n\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)
\(=\frac{1.2.3.4.5.6...\left(2n-1\right)}{2^n.1.2.3....n\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)
\(=\frac{1}{2^n}\left(đpcm\right)\)
Lời giải:
\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)
\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)
\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)
Ta có đpcm.
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41
đã làm đề 23 rùi hả!!!!!