K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)

+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)

+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)

+) \(A=\left|x-1004\right|-\left|x+1003\right|\)

Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)

Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)

Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)

14 tháng 8 2020

.a, \(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)

.\(< =>\frac{x+1}{999}+1+\frac{x+2}{998}+1=\frac{x+3}{997}+1+\frac{x+4}{996}+1\)

.\(< =>\frac{x+1}{999}+\frac{999}{999}+\frac{x+2}{998}+\frac{998}{998}=\frac{x+3}{997}+\frac{997}{997}+\frac{x+4}{996}+\frac{996}{996}\)

.\(< =>\frac{x+1+999}{999}+\frac{x+2+998}{998}=\frac{x+3+997}{997}+\frac{x+4+996}{996}\)

.\(< =>\frac{x+1000}{999}+\frac{x+1000}{998}-\frac{x+1000}{997}-\frac{x+1000}{996}=0\)

.\(< =>\left(x+1000\right)\left(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\right)=0\)

.Do \(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\ne0\)

.Suy ra \(x+1000=0\Leftrightarrow x=-1000\)

.b, \(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)

.\(< =>\frac{x+1}{1001}-1+\frac{x+2}{1002}-1=\frac{x+3}{1003}-1+\frac{x+4}{1004}-1\)

.\(< =>\frac{x+1}{1001}-\frac{1001}{1001}+\frac{x+2}{1002}-\frac{1002}{1002}=\frac{x+3}{1003}-\frac{1003}{1003}+\frac{x+4}{1004}-\frac{1004}{1004}\)

.\(< =>\frac{x+1-1001}{1001}+\frac{x+2-1002}{1002}=\frac{x+3-1003}{1003}+\frac{x+4-1004}{1004}\)

.\(< =>\frac{x-1000}{1001}+\frac{x+1000}{1002}-\frac{x+1000}{1003}-\frac{x+1000}{1004}=0\)

.\(< =>\left(x-1000\right)\left(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\right)=0\)

.Do \(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\ne0\)

.Suy ra \(x-1000=0\Leftrightarrow x=1000\)

14 tháng 8 2020

cảm ơn

12 tháng 12 2019
A) 5 2/3.x+1 2/3= 4 1/2 17/3.x+ 5/3 = 9/2 17/3.x =9/2-5/3 17/3.× =17/6 × =17/6÷17/3 × =17/6.3/17 × =1/2
2 tháng 2 2020

Bài 1 : 

Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)

\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )

Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)

\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)

\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)

Bài 2 , để chiều nhé bạn

2 tháng 2 2020

Bài 3 : 

Cách 1 : 

\(\left|x-1004\right|-\left|x+1003\right|\)

+ ) Xét \(x< -1003\)suy ra 

\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)

+ ) Xét \(-1003\le x< 1004\). Suy ra 

\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)

+ ) Xét \(x\ge1004\). Suy ra 

\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)

Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)

Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007 

Vậy \(A_{max}=2007\)khi \(x< -1003\)

29 tháng 8 2017

I

Dễ mà kb vs mk đi

29 tháng 8 2017

giải giúp mình bài 1 rồi mình addfriend cho

5 tháng 7 2017

Bài 2 : 

 Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)

Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)

6 tháng 7 2017

Cảm ơn bạn nhiều nha

Còn câu b bạn suy nghĩ được chưa