Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: |x-2|=1
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Thay x=3 vào biểu thức \(6x^2+5x-2\), ta được:
\(6\cdot3^2+5\cdot3-2=54+15-2=67\)
Thay x=1 vào biểu thức \(6x^2+5x-2\), ta được:
\(6\cdot1^2+5\cdot1-2=6+5-2=9\)
Vậy: Khi |x-2|=1 thì giá trị của biểu thức \(6x^2+5x-2\) là 67 hoặc 9
B=8+3.1/4-1/4+(4:1/2).8
=8+3/4-1/4+8.8
=8+3/4-1/4+64
=35/4-275/4
=-60
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
1.
\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)
\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)
\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)
\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)
\(=\dfrac{-48}{12}\)
\(=-4\)
2.
a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)
\(\Leftrightarrow x=\dfrac{-11}{20}\)
b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)
3.
a) \(\dfrac{16}{2^n}=2\)
\(\Leftrightarrow2^n=16:2\)
\(\Leftrightarrow2^n=8\)
\(\Leftrightarrow2^n=2^3\)
\(\Leftrightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{81}=-27\)
\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Leftrightarrow n=7\)
4. Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Vì \(x-y+x=-49\) ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
Bài 1:
a.
$|x+\frac{7}{4}|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)
b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$
$|2x+1|=\frac{11}{15}$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)
c.
$3x(x+\frac{2}{3})=0$
\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)
d.
$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$
$\Leftrightarrow x=\frac{2}{5}$
Nguyễn Quý Trung:
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)
Bài 1 :
Đặt :
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=3k\\3y=4k\\4z=5k\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3k}{2}\\y=\dfrac{4k}{3}\\z=\dfrac{5k}{4}\end{matrix}\right.\)
Thay vào \(x+y+z=49\) ta được :
\(\dfrac{3k}{2}=\dfrac{4k}{3}=\dfrac{5k}{4}=49\)
\(\Leftrightarrow\dfrac{18k+16k+15k}{12}=\dfrac{588}{12}\)
\(\Leftrightarrow49k=588\)
\(\Leftrightarrow k=12\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3.12}{2}=18\\y=\dfrac{4.12}{3}=16\\z=\dfrac{5.12}{4}=15\end{matrix}\right.\)
Vậy ....
Bài1:
Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{90}=\dfrac{y}{80}=\dfrac{z}{75}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{90}=\dfrac{y}{80}=\dfrac{z}{75}=\dfrac{x+y+z}{90+80+75}=\dfrac{49}{245}=\dfrac{1}{5}\)
=>x=18;b=16;c=15
Vậy...