Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2x^2\)+\(3\left(x^2-1\right)\)=\(5x\left(x+1\right)\)
\(2x^2\)+\(3x^2\)\(-3\)=\(5x^2+5x\)
\(5x^2-5x^2-5x=3\)
\(-5x=3\)
\(x=\frac{-3}{5}\)
tự ghi dấu suy ra ở đằng trước nhé
b) Vì \(2x\left(5-3x\right)=2x\left(3x-5\right)-3\left(x-7\right)=3\)
nên chỉ cần giải: \(6x^2-10x-3x+21=3\)
\(\Leftrightarrow6x^2-13x+21=3\)
\(\Leftrightarrow6x^2-13x+18=0\)
\(\Rightarrow\)pt vô nghiệm
a,\(4x\left(2x+3\right)-x\left(8x-1\right)=5\left(x+2\right)\)
\(< =>8x^2+12x-8x^2+x=5x+10\)
\(< =>13x=5x+10< =>8x=10\)
\(< =>x=\frac{10}{8}=\frac{5}{4}\)
b, \(\left(3x-5\right)\left(3x+5\right)-x\left(9x-1\right)=4\)
\(< =>9x^2-25-9x^2+x=4\)
\(< =>x=4+29=33\)
c,\(3-4x\left(25-2x\right)=8x^2+x-300\)
\(< =>3-100x+8x^2=8x^2+x-300\)
\(< =>x+100x=3+300\)
\(< =>101x=303< =>x=\frac{303}{101}=3\)
d,\(2\left(1-\frac{3x}{5}\right)-\frac{2+3x}{10}=7-\frac{3\left(2x+1\right)}{4}\)
\(< =>2-\frac{6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(< =>-\frac{24x}{20}-\frac{4+6x}{20}+\frac{30x+15}{20}=5\)
\(< =>\frac{30x-6x-24x+15-4}{20}=5\)
\(< =>\frac{11}{5}=5< =>11=25\)(vo li)
(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)
20x2−16x−34=10x2+3x−120x2−16x−34=10x2+3x−1
10x2−19x−33=010x2−19x−33=0
(10x+11)(x−3)=0
chỉ bt lm con b thoy
..army,,,,,,,,,,
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+20+2\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+22\left(3x^2-17x\right)\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\frac{22}{5}\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x+1\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x-3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2\)
\(\Leftrightarrow20x^2-16x-33=10x^2-10x^2\)
\(\Leftrightarrow20x^2-16x-33=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)