Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2x-1}=3\left(đk:x\ge\dfrac{1}{2}\right)\)
\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Leftrightarrow x=5\)(thỏa đk)
b) \(\sqrt{1-3x}=\dfrac{1}{2}\left(đk:x\le\dfrac{1}{3}\right)\)
\(\Leftrightarrow1-3x=\dfrac{1}{4}\Leftrightarrow3x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{4}\)(thỏa đk)
c) \(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)
\(\Leftrightarrow\left|x-1\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}\\x-1=-\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left|1+2x\right|=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}1+2x=\dfrac{\sqrt{3}}{2}\\1+2x=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{3}}{4}\\x=-\dfrac{2+\sqrt{3}}{4}\end{matrix}\right.\)
e) \(\sqrt{\left(1-2x\right)^2}=\left|x-1\right|\)
\(\Leftrightarrow\left|1-2x\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=x-1\\1-2x=1-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=0\end{matrix}\right.\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{matrix}\right.\) \(\Rightarrow2=a^2+b^2\)
\(A=\dfrac{\sqrt{1-ab}\left(a^3+b^3\right)}{a^2+b^2-ab}=\dfrac{\sqrt{\dfrac{2}{2}-ab}\left(a+b\right)\left(a^2+b^2-ab\right)}{a^2+b^2-ab}\)
\(=\sqrt{\dfrac{a^2+b^2}{2}-ab}\left(a+b\right)=\left(a+b\right)\sqrt{\dfrac{\left(a-b\right)^2}{2}}=\dfrac{\left|a-b\right|\left(a+b\right)}{\sqrt{2}}\)
\(=\pm\dfrac{a^2-b^2}{\sqrt{2}}=\pm\dfrac{2x}{\sqrt{2}}=\pm\sqrt{2}x\)
b.
\(A\ge\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}\sqrt{2}x\ge\dfrac{1}{2}\left(x\ge0\right)\\-\sqrt{2}x\ge\dfrac{1}{2}\left(x\le0\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{\sqrt{2}}{4}\\x\le-\dfrac{\sqrt{2}}{4}\end{matrix}\right.\)
Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}\dfrac{\sqrt{2}}{4}\le x\le1\\-1\le x\le-\dfrac{\sqrt{2}}{4}\end{matrix}\right.\)
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\\\sqrt{1+x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=2\) ta được:
\(A=\dfrac{\sqrt{1-ab}\left(a^3+b^3\right)}{2-ab}=\dfrac{\sqrt{\dfrac{a^2+b^2}{2}-ab}\left(a+b\right)\left(a^2+b^2-ab\right)}{a^2+b^2-ab}\)
\(=\sqrt{\dfrac{a^2+b^2-2ab}{2}}\left(a+b\right)=\dfrac{\left|a-b\right|\left(a+b\right)}{\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{1-x}-\sqrt{1+x}\right|\left(\sqrt{1-x}+\sqrt{1+x}\right)}{\sqrt{2}}\)
- Với \(-1\le x\le0\Rightarrow A=\dfrac{\left(\sqrt{1-x}-\sqrt{1+x}\right)\left(\sqrt{1-x}+\sqrt{1+x}\right)}{\sqrt{2}}=-\sqrt{2}x\)
- Với \(0\le x\le1\Rightarrow A=\dfrac{\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(\sqrt{1+x}+\sqrt{1-x}\right)}{\sqrt{2}}=\sqrt{2}x\)
b.
TH1: \(\left\{{}\begin{matrix}-1\le x\le0\\-\sqrt{2}x\ge\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow-1\le x\le-\dfrac{1}{2\sqrt{2}}\)
TH2: \(\left\{{}\begin{matrix}0\le x\le1\\\sqrt{2}x\ge\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2\sqrt{x}}\le x\le1\)
\(a,ĐKXĐ:x\ge1\\ 13-\sqrt{x-1}=10\\ \Leftrightarrow\sqrt{x-1}=3\\ \Leftrightarrow x-1=9\\ \Leftrightarrow x=10\\ b,ĐKXĐ:x\in R\\ \sqrt{\left(2x-1\right)^2}-1=3\\ \Leftrightarrow\left|2x-1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=-4\\2x-1=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)