Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x+4-2x\right|+\left|x-2+a\right|\le3\)
đặt a-2=y
=> |2x-y|+|x+y| =<3
=> Tập GT \(\left(\frac{-1}{2};\frac{3}{2}\right)\)
\(B=cos^2x+cos^2\left(x+y\right)-\left[cos\left(x+y\right)+cos\left(x-y\right)\right]cos\left(x+y\right)\)
\(=cos^2x+cos^2\left(x+y\right)-cos^2\left(x+y\right)-cos\left(x-y\right)cos\left(x+y\right)\)
\(=cos^2x-\dfrac{1}{2}\left(cos2x+cos2y\right)\)
\(=\dfrac{1}{2}+\dfrac{1}{2}cos2x-\dfrac{1}{2}cos2x-\dfrac{1}{2}cos2y\)
\(=\dfrac{1}{2}-\dfrac{1}{2}cos2y\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{1}{2}\end{matrix}\right.\)
\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)
\(=sinx+siny-sin\left(x+y\right)\)
\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)
\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)
\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)
\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)