Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) =
= 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)
1
Đặt \(A=\dfrac{7n-8}{2n-3}\)
Ta có \(2A=\dfrac{2\left(7n-8\right)}{2\left(2n-3\right)}=\dfrac{14n-16}{2\left(2n-3\right)}=\dfrac{7\left(2n-3\right)+5}{2\left(2n-3\right)}\)
\(=\dfrac{7}{2}+\dfrac{5}{2\left(2n-3\right)}\)
A lớn nhất \(\Leftrightarrow\) 2A lớn nhất \(\Leftrightarrow\dfrac{5}{2\left(2n-3\right)}\) lớn nhất
=> 2n-3 là số dương nhỏ nhất
=> 2n-3 = 1
=> 2n =4
=> n = 2
Thay n = 2 vào A, ta được A = 6
Vậy GTLN của A =6 khi n =2
2)
Ta có p(x) chia hết cho 5 với mọi x nguyên
=> p (0) chia hết cho 5
\(\Leftrightarrow d⋮5\left(1\right)\)
p(1) \(⋮5\)
=> a+b+c+d \(⋮5\)
Mà d chia hết cho 5 => \(a+b+c⋮5\)
p(-1) \(⋮5\)
\(\Rightarrow-a+b-c⋮5\)
Ta có p(1)+p(2) chia hết cho 5
=> a+b+c -a +b-c \(⋮5\)
=> 2b \(⋮5\)
=. b chia hết cho 5 (2)
Vì a+b+c \(⋮5\) , b \(⋮5\)
\(\Rightarrow a+c⋮5\) (*)
Ta có p(2) = 8a+4b+2c+d
p (2) \(⋮5\)
=>8a + 2c chia hết cho 5 (**)
Từ * và ** suy ra a và c đều chia hết cho 5 ( vì 8 và 2 \(⋮̸\)5, muốn 8a+2c \(⋮5\) thì cả a và c đều phải chia hết cho 5) (3)
Từ (1), (2),(3) suy ra ĐPCM
c) Câu này tớ không nhớ :)))
F(0)=d⇒d⋮5F(0)=d⇒d⋮5
F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5
F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5
⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5
⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5
⇒a+c⋮5
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
Tham khảo nhé:
Câu hỏi của Doraemon - Toán lớp 7 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/240754432073.html
Dạng giống nha
Bài 1: Vì: 2x^3 - 1 = 15
=> 2x^3 = 16
=> x^3 = 8
=> x = 2 (1)
Ta có:
* (x + 16)/9 = (y - 25)/16
<=> (2 + 16)/9 = (y - 25)/16
<=> 18/9 = (y - 25)/16
<=> 2 = (y - 25)/16
<=> y - 25 = 16.2 = 32
=> y = 32+25 = 57 (2)
* (x + 16)/9 = (z + 9)/25
<=> (2 + 16)/9 = (z + 9)/25
<=> 2 = (z + 9)/25
<=> z + 9 = 25.2 = 50
=> z = 50 - 9 = 41 (3)
Từ (1), (2) và (3) => x + y + z = 2 + 57 + 41 = 100
Bài 2:
c) vì a,b,c là độ dài các cạnh của tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< 1\\\dfrac{b}{a+c}< 1\\\dfrac{c}{a+b}< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\\\dfrac{b}{a+c}< \dfrac{2b}{a+b+c}\\\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\end{matrix}\right.\)
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) (đpcm)