K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2015

Câu 1 thì mình biết làm đó.

Vì 2013 chia 7 dư 4 nên 20132012 chia 7 cũng dư 4

 

30 tháng 8 2016

chắc là 2 đấy

13 tháng 7 2015

n = 2 

26 tháng 5 2016

thành 6a3 cũng thấy bài này khó à tớ cũng vừa lên hỏi xong ha ha thế mà tớ cũng tưởng thành làm được đang định gọi điện hỏi thì...

25 tháng 9 2016

+ n chẵn 

Có \(2\equiv-1\) \(\text{( mod 3 )}\)

\(\Rightarrow2^n\equiv\left(-1\right)^n=1\text{( mod 3 )}\)

\(\Rightarrow2^n+1=2\text{( mod 3 )}\) ( loại )

\(n\) lẻ :

Có : \(2\equiv-1\) \(\text{( mod 3 )}\)

\(\Rightarrow2^n\equiv\left(-1\right)^n=-1\text{( mod 3 )}\)

\(\Rightarrow2^n+1\equiv0\text{( mod 3 )}\)

hay \(3\left|\left(2^n+1\right)\right|\)

Vậy với \(n\)lẻ thì ...............

15 tháng 12 2016

làm câu

30 tháng 6 2021

n có dạng 3k+1,3k+2,3k (k\(\in N\))

nếu n=3k thì 2n-1=23k-1=8k-1 mà 8k-1\(⋮\)(8-1)  suy ra 2n-1\(⋮\left(8-1\right)\)suy ra 2n-1\(⋮7\)

nếu n=3k+1 thì 2n-1=23k+1-1=8k.2-1=8k-1+8k mà 8k-1 chia hết cho 7 mà 8ko chia hết cho 7 suy ra 2n-1 ko chia hết cho 7

nếu n=3k+2(bạn xét như 3k+1 thôi) thì 2n-1 ko chia hết cho 7

vậy n=3k hay n thuộc bội của 3