Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A thuộc Z
=> 6n - 1 chia hết cho 3n + 2
6n + 4 - 4 - 1 chia hết cho 3n + 2
2.(3n + 2) - 5 chia hết cho 3n + 2
=> 5 chia hết cho 3n + 2
=> 3n + 2 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Ta có bảng sau :
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 | -1 | 1 | -7/3 |
Để A thuộc Z thì 6n-1 phải chia hết cho 3n+2
suy ra 6n+4-5 sẽ chia hết cho 3n+2
mà 6n+4 chia hết cho 3n+2
suy ra 5 chia hết cho 3n+2
suy ra 3n+2 thuộc tập hợp có:-5;-1;1;5
suy ra 3n thuộc tập hợp có -7;-3;-2;3
vậy n thuộc tập hợp có 2 phần tử là -1;1
Để A thuộc Z => 6n - 1 chia hết 3n + 2
=> 2(3n+2) - 5 chia hết 3n + 2
=> 5 chia hết 3n + 2
=> 3n + 2 thuộc Ư(5)=.............
=> ............Còn lại tự làm nha!
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}\)\(=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
a, Để A thuộc Z <=> 3n + 2 thuộc Ư(5) = {1;-1;5;-5}
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 (loại) | -1 | 1 | -7/3 (loại) |
Vậy n = {-1;1}
b, Để A có giá trị nhỏ nhất <=> \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất
<=> 3n + 2 là số nguyên âm lớn nhất
<=> 3n + 2 = -1 => n = -1
Khi đó: A = \(\frac{6n-1}{3n+2}=\frac{6.\left(-1\right)-1}{3.\left(-1\right)+2}=\frac{-6-1}{-3+2}=\)\(\frac{-7}{-1}=7\)
Vậy GTNN của A = 7 khi n = -1
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời