K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)

\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)

\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)

19 tháng 7 2018

\(4,A=x+\sqrt{x}+1\)

\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi :

\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)

Vậy Min A = 3/4 khi căn x = -1/2

30 tháng 7 2019

\(ĐKXĐ:\)

\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)

Vậy...................................................

30 tháng 7 2019

\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)

\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{3}{\left(2+\sqrt{x}\right)}\)

4 tháng 10 2019

1.a)ĐKXĐ:\(\left\{{}\begin{matrix}x-1\ge0\\1-\sqrt{x-1}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne2\end{matrix}\right.\)

b)ĐKXĐ:\(\left\{{}\begin{matrix}x^2-2x+1\ge0\\\sqrt{x^2-2x+1}\ne0\end{matrix}\right.\Leftrightarrow x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\) luôn đúng với mọi x \(\ne\)1

Vậy biểu thức xác định khi \(x\ne1\)

2.\(B=\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{\sqrt{16-2\sqrt{15}}}{\sqrt{60}-2}=\frac{\sqrt{15-2\sqrt{15}+1}}{2\sqrt{15}-2}=\frac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\frac{1}{2}\)

3.a)ĐKXĐ:\(x\ge0\)

b)\(Q=\left(\frac{1}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right):\frac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)

\(=\left(\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}\left(x+1\right)}\right):\frac{x-\sqrt{x}+1}{\sqrt{x}^3+1}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}\left(x+1\right)}.\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

c)\(Q=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\)

Để \(Q\in Z\) thì

\(1⋮\sqrt{x}\)

\(\Rightarrow\sqrt{x}\in\left\{-1;1\right\}\)(loại -1 vì \(\sqrt{x}\ge0\))

\(\Rightarrow x\in\left\{1\right\}\)

cho mik hoi \(x\in Z\) \(Q\in Z\) khi nao v

10 tháng 8 2015

a)ĐKXĐ:x khác 4, x>0

\(Q=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2x}{\left(x-4\right)\left(\sqrt{x}-2\right)}\)

mình nghĩ đề sai nên không làm tiếp nữa

10 tháng 8 2015

đề đúng bạn ạg... tks nheg

12 tháng 9 2020

Đk: x \(\ge\)0; x \(\ne\)1; x \(\ne\)9

1) \(B=\left(\frac{2x+3}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)

\(B=\frac{2x+3-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-x-4}{x+\sqrt{x}+1}\)

\(B=\frac{-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}-3}\)

\(B=\frac{-\left(x+2\sqrt{x}-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+2}{3-\sqrt{x}}\)

2. \(B=\frac{\sqrt{x}+2}{3-\sqrt{x}}=\frac{-\left(3-\sqrt{x}\right)+5}{3-\sqrt{x}}=-1+\frac{5}{3-\sqrt{x}}\)

Để B \(\in\)Z <=> 5 \(⋮\)\(3-\sqrt{x}\)

<=> \(3-\sqrt{x}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do \(3-\sqrt{x}\le\)3 => 3 - \(\sqrt{x}\)\(\in\){1; -1; -5}

Lập bảng:

\(3-\sqrt{x}\) 1  -1 -5 
   x 4 16 64

Vậy ...