Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=\left[x^2\left(x-y\right)+y^2\left(x-y\right)\right]\left(x+y\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=x^4-y^4=2^4-\left(\dfrac{1}{2}\right)^4=16-\dfrac{1}{16}=\dfrac{255}{16}\)
c)\(\left(xy^2-1\right)\left(x^2y+5\right)\)
\(=x^3y^3+5xy^2-x^2y-5\)
d)\(4\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x^2+1\right)\)
\(=4\left(x^2-\dfrac{1}{4}\right)\left(4x^2+1\right)\)
\(=4\left(4x^4+x^2-x-\dfrac{1}{4}\right)\)
\(=16x^4+4x^2-4x-1\)
Giả sử \(A=1+x+y⋮p\)
Ta có:
\(p=q.B\)(với q là số nguyên tố)
\(\Rightarrow1+x+y⋮q\)
Mà ta lại có:
\(\Rightarrow\hept{\begin{cases}x^{2016}⋮p\\y^{2017}⋮p\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^{2016}⋮q\\y^{2017}⋮q\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x⋮q\\y⋮q\end{cases}}\)
\(\Rightarrow1+x+y⋮̸q\)
Mâu thuẫn giả thuyết. Vậy \(A⋮̸p\)