K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Bài 2 :

Ta có : \(S=4+4^2+4^3+...+4^{2004}\)

=> \(4S=4^2+4^3+...+4^{2005}\)

=> \(4S-S=\left(4^2+4^3+...+4^{2005}\right)-\left(4+4^2+...+4^{2004}\right)\)

=> \(3S=-4+4^{2005}\)

=> \(3S+4=-4+4^{2005}+4=4^{2005}\)

\(4^{2005}:4^{2004}=4\)

=> \(4^{2005}⋮4^{2004}\)

=> \(3S+4⋮4^{2004}\) ( đpcm )

16 tháng 6 2017

1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)

\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)

Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)

\(\Rightarrow2abc⋮4\)

Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)

\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)

Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)

17 tháng 8 2015

bai 2: a) \(2^{30}=\left(2^3\right)^{10}=8^{10}\)

            \(3^{20}=\left(3^2\right)^{10}=9^{10}\)

vi 810 <910 nen 230 <320

       b)       \(5^{202}=\left(5^2\right)^{101}=25^{101}\)

                 \(2^{505}=\left(2^5\right)^{101}=32^{101}\)

vi 25101 <32101 nen 5202 <2505

c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

   \(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

vi 81111>64111 va 111444>111333

nen 333444>444333

bai 3 : \(\left(\frac{1}{3}\right)^{2n-1}=3^5\)

 \(\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^{-5}\)

2n-1=-5

2n=-5+1

2n=-4

n=-4:2

n=-2

Bai 4 : 3x-5/9=0 va 3y+0,4/3=0

           3x=5/9 va 3y=2/15

             x=5/27 va y=2/45

Bai 5:

A=75. {42002.(42+1)+....+(42+1)+1)+25

A=75.{42002.20+...+20+1}+25

A=75.{20.(42002+...+1)+1}+25

A=75.20.(42002+..+1)+75+25

A=1500.(42002+...+1)+100

A=100.{15.(42002+...+1)+1} chia het cho 100