K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Vì BCNN (a,b) = 300 và ƯCLN (a,b) = 15

=> a.b = 300 .15 = 4500

ƯCLN (a,b) = 15 nên => a = 15m và b = 15n [ với ƯCLNH ( m;n ) = 1 ]

và a+15 = b nên => 15m + 15 = 15n => 15( m+1 ) = 15n => m+1 = n

Mà a.b = 4500 nên ta có :

+) 15m.15n = 4500

+) 15.15.m.n = 4500

+) 152..m.n = 4500

+) 225.m.n = 4500

=> m.n = 20

=> m = 1 và n = 20 hoặc m = 4 và n = 5

mà m+1 = n => m = 4 và n = 5

=> a = 15 . 4 = 60

b = 15 . 5 = 75

Vậy a = 60 và b = 75

Chúc bn hc tốt ! ^^

14 tháng 11 2016

hình như thiếu đề thì pải

Tìm a,b \(\in\) N, biết:

BCNN (a,b) = 300

ƯCLN (a,b) = 15

và a + 15 = b chứ

29 tháng 11 2021

Tham Khảo:

https://hoc247.net/hoi-dap/toan-6/tim-2-so-tu-nhien-a-b-biet-ucln-a-b-5-bcnn-a-b-300-faq306597.html

Nghĩ là vại 

AH
Akai Haruma
Giáo viên
9 tháng 12 2021

Lời giải:
Gọi ƯCLN(a,b) = d thì $a=dx, b=dy$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.

BCNN(a,b) = dxy

Theo bài ra ta có: $dxy+d=15$

$d(xy+1)=15$

$\Rightarrow 15\vdots d$ nên $d\in\left\{1;3;5;15\right\}$

Nếu $d=1$ thì $xy+1=15\Rightarrow xy=14$.

Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,14), (14,1), (2,7), (7,2)$

$\Rightarrow (a,b)=(1,14), (14,1), (2,7), (7,2)$

Nếu $d=3$ thì $xy=4$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,4), (4,1)$

$\Rightarrow (a,b)=(3,12), (12,3)$

Nếu $d=5$ thì $xy=2$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(2,1), (1,2)$

$\Rightarrow (a,b)=(10,5), (5,10)$

Nếu $d=15$ thì $xy=0$ (vô lý, loại)

 

a: Để -13/a+7/a là số nguyên thì \(a\inƯ\left(-6\right)\)

hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

b: \(\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)

Để b/3 là số nguyên thì b=3k(k là số nguyên)

1 tháng 2 2022

Bạn làm chi tiết hơn đc hông :<

a: \(A=\dfrac{-13}{a}+\dfrac{7}{a}=\dfrac{-6}{a}\)

Để A là số nguyên thì \(a\inƯ\left(-6\right)\)

hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

b: \(B=\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)

Để B là số nguyên thì b chia hết cho 3

hay b=3k, với k là số nguyên