K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Bài 2:

\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)

Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì

\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)

Với \(f\left(-4\right)\) ta có:

\(f\left(-4\right)=-64+16a-4b-60=0\)

\(\Leftrightarrow16a-4b=124\)

(1)

Với \(f\left(-5\right)\) , ta có:

\(f\left(-5\right)=-125+25a-5b-60=0\)

\(\Leftrightarrow25a-5b=185\)(2)

Từ (1) và (2) , ta có:

\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)

Giải hệ ta được :

\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)

p/s: Lm xog chả bk mk lm cái zề nữa hiha

T.Thùy Ninh

3 tháng 8 2017

Theo bài toán:

\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)

\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)

Ta có:

\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)

\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)

\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)

\(=x^3-4x^2+x+6\)

p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha

14 tháng 8 2017

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé

https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N

14 tháng 8 2017

Ko biết đợi đứa khác đê

a: Thay a=2 vào f(x), ta được:

f(x)=3x-2

f(x):g(x)

\(=\dfrac{3x-2}{x-1}\)

\(=\dfrac{3x-3+1}{x-1}\)

\(=3+\dfrac{1}{x-1}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9