Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có; a+b=125 và a/3+2b=125
=>a=75; b=50
Giải theo tiểu học vì bài này là chương trình lớp 5.
Giảm dài 2 lần mà tăng rộng 3 lần mà chu vi không đổi có nghĩa là phần tăng và giảm là bằng nhau.
giảm dài 2 lần tức là mất đi 1/2 chiều dài. Rộng tăng 3 lần có nghĩa là chiều rộng thêm 2 lần của nó nửa. Vậy 1/2 chiều dài bằng 2 lần chiều rộng hay chiều dài bằng 4 lần chiều rộng.
Giải theo dạng tìm hai số khi biết hiệu và tỷ của nó.
Chiều rộng là: 45:(4-1)x 1= 15m và chiều dài là 15+45=60m
Diện tích: 60x15= 900m2
Gọi cd là a(m;a>0)
Ta có cr là a-45(m)
Theo đề: \(\dfrac{a}{2}+3\left(a-45\right)=a+a-45\Leftrightarrow a=60\)
Vậy diện tích là \(60\cdot\left(60-45\right)=900\left(m^2\right)\)
gọi chiều dài thửa ruộng là x (m) ( x > 0 )
chiều rộng....................y (m) (y>0)
theo bài ra ta có hệ phương trình : \(\hept{\begin{cases}2x+2y=250\\\left(\frac{x}{3}+2y\right).2=250\end{cases}}\)
=> x = 75 , y = 50
Gọi chiều dài là a;chiều rộng là b (\(a,b\in N\)*; a<b)
Nửa chu vi thửa ruộng là:
250:2=125m
\(\Rightarrow a+b=125\left(1\right)\)
Nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi của thửa ruộng vẫn không đổi
\(\Rightarrow\left[\left(a-3\right)+\left(b+2\right)\right]\times2=\left(a+b\right)\times2\left(2\right)\)
Từ (1) và (2) ta có hệ... nhưng vô nghiệm ko bít tui sai hay đề sai :D
Lớp 9 thì lập hệ =))
Nửa chu vi thửa ruộng hcn là: 94 : 2 = 47 (m)
Gọi chiều dài thửa ruộng hcn là: x
chiều rộng thửa ruộng hcn là: y
ĐK: x > y > 0
Theo đề bài ta có hệ phương trình:
\(\hept{\begin{cases}y+x=47\\5y-4x=10\end{cases}}\)(nhân 4 cho phương trình trên)
\(\Leftrightarrow\hept{\begin{cases}4y+4x=188\\5y-4x=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9y=198\\y+x=47\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=22\\x+22=47\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=22\\x=25\end{cases}}\)(nhận)
Diện tích thửa ruộng hcn là: 22 x 25 = 550 (m2)
gọi chiều dài và chiều rộng ban đầu của hcn là x ; y ( đk x > y > 0 ; đv m )
nửa chu vi hcn ban đầu là x + y = 250 : 2 = 125 (1)
nếu chiều dài tăng 15m chiều rộng giảm 15m thì diện tích giảm đi 450m2 ta có pt
( x + 15 ) (y - 15 ) = xy - 450 (2)
từ 1 và 2 ta có hpt
\(\hept{\begin{cases}x+y=125\\\left(x+15\right)\left(y-15\right)=xy-450\end{cases}}< =>\hept{\begin{cases}x+y=125\\xy-15x+15y-225=xy-450\end{cases}}\)
\(< =>\hept{\begin{cases}x+y=125\\-15x+15y=225\end{cases}}\)
\(\hept{\begin{cases}x=70\\y=55\end{cases}}\)
diện tích hcn ban đầu là
x y = 70 x 55 =3850 m2
Gọi chiều rộng của thửa ruộng là a(m)(Điều kiện: a>0)
Chiều dài của thửa ruộng là: a+4(m)
Vì diện tích của thửa ruộng là 320m2 nên ta có phương trình:
a(a+4)=320
\(\Leftrightarrow a^2+4a-320=0\)(1)
\(\Delta=4^2-4\cdot1\cdot\left(-320\right)=1296\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-4-36}{2}=-20\left(loại\right)\\a_2=\dfrac{-4+36}{2}=16\left(nhận\right)\end{matrix}\right.\)
Chiều dài của thửa ruộng là: 16+4=20(m)
Chu vi của thửa ruộng là:
\(\left(16+20\right)\cdot2=36\cdot2=72\left(m\right)\)