Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)
\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)
Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.
Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)
\(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)
\(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)
\(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)
\(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)
3: |2x-1|=|x+1|
=>2x-1=x+1 hoặc 2x-1=-x-1
=>x=2 hoặc 3x=0
=>x=2 hoặc x=0
4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
Ta có : \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\sqrt[3]{\sqrt{5}-2^{ }}\right)^3}{\sqrt{5}+3-\sqrt{5}}\) 2)3 trong căn bậc nhé mk ko vt đc ( ko bt giải thick thông cảm )
\(=\frac{\sqrt{5}^2-2^2}{3}\)
\(=\frac{1}{3}\)
Vậy \(A=\left(3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right)^{2011}=3^{2011}\)
Trả lời
A=(3x3+8x2+2)2011 với x=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}\sqrt{9-6\sqrt{5}+5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(5\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{3}\)
=1/3
Học tốt !
a/ \(\Leftrightarrow9x^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)
\(\Leftrightarrow x=\pm2\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\) (do \(x^2+\dfrac{1}{2}>0\))
\(\Leftrightarrow x=\pm1\)
c/ Có \(\left|x+4\right|\ge0\forall x\)
=> \(\left|x+4\right|+5\ge5>0\forall x\)
\(\Rightarrow\left|x+4\right|+5=0\left(vô-lí\right)\)
\(\Rightarrow x\in\varnothing\)
d/ \(\sqrt{2x}-3-1=0\)
\(\Leftrightarrow\sqrt{2x}=4\)
\(\Leftrightarrow2x=16\)
\(\Leftrightarrow x=8\)
thay x = 7 vào biểu thức, ta đc:
\(P=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}=3^{2^{1^{13^{12}}}}\)
\(=3^{2^1}=9\)
\(\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}=\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}=1^{13^{12}}=1\)
=> P(1) = \(\left(7-4\right)^{\left(7-5\right)^1}=3^2=9\)
ko nhìn thấy bợn ưi
1. Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9\)
mà \(\sqrt{83}>\sqrt{81}=9\)
\(\Rightarrow\sqrt{23}+\sqrt{15}< \sqrt{83}\)