K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{\left(1+2cos^2x-1+2sinx.cosx\right)cosx+cos^2x-sin^2x}{1+\dfrac{sinx}{cosx}}=cosx\)

\(\Leftrightarrow\dfrac{2cos^2x\left(sinx+cosx\right)+\left(sinx+cosx\right)\left(cosx-sinx\right)}{\dfrac{sinx+cosx}{cosx}}=cosx\)

\(\Leftrightarrow\dfrac{cosx\left(sinx+cosx\right)\left(2cos^2x+cosx-sinx\right)}{sinx+cosx}=cosx\)

\(\Rightarrow2cos^2x+cosx-sinx=1\)

\(\Rightarrow cosx-sinx-cos2x=0\)

\(\Rightarrow cosx-sinx-\left(cos^2x-sin^2x\right)=0\)

\(\Rightarrow cosx-sinx-\left(cosx-sinx\right)\left(cosx+sinx\right)=0\)

\(\Rightarrow\left(cosx-sinx\right)\left(1-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\dfrac{\pi}{4}\)

Có 1 nghiệm trên khoảng đã cho

1 tháng 6 2021

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

1 tháng 6 2021

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

16 tháng 6 2021

    1 + sinx + cosx + sin2x + cos2x = 0

<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0

<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0

<=> 2cosx ( cos x + sinx) + sinx + cosx = 0

<=> ( cosx + sinx ) (2 cos x + 1 ) = 0

<=> cosx + sinx = 0 hoặc 2cosx + 1 =0

 

NV
6 tháng 7 2021

1.

\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)

\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)

\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)

2.

Đề bài thiếu, cos?x

Và x thuộc khoảng nào?

3.

\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)

\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)

\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)

4.

\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)

\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)

14 tháng 8 2017

a) Đk: sinx \(\ne\)0<=>x\(\ne\)k\(\Pi\)

pt<=>\(\sqrt{3}\)(1-cos2x)-cosx=0

<=>\(\sqrt{3}\)[1-(2cos2x-1)]-cosx=0

<=>2\(\sqrt{3}\)-2\(\sqrt{3}\)cos2x-cosx=0

<=>\(\left\{{}\begin{matrix}cosx=\dfrac{\sqrt{3}}{2}\\cosx=-\dfrac{2\sqrt{3}}{3}< -1\left(loai\right)\end{matrix}\right.\)

tới đây bạn tự giải cho quen, chứ chép thì thành ra không hiểu gì thì khổ

b)pt<=>2sin2x+2sin2x=1

<=>2sin2x+2sin2x=sin2x+cos2x

<=>4sinx.cosx+sin2x-cos2x=0

Tới đây là dạng của pt đẳng cấp bậc 2, ta thấy cosx=0 không phải là nghiệm của pt nên ta chia cả hai vế của pt cho cos2x:

pt trở thành:

4tanx+tan2x-1=0

<=>\(\left[{}\begin{matrix}tanx=-2+\sqrt{2}\\tanx=-2-\sqrt{5}\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=arctan\left(-2+\sqrt{5}\right)+k\Pi\\x=arctan\left(-2-\sqrt{5}\right)+k\Pi\end{matrix}\right.\)(k thuộc Z)

Chú ý: arctan tương ứng ''SHIFT tan'' (khi thử nghiệm trong máy tính)

c)Đk: cosx\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{2}\)+kpi

pt<=>cos2x+\(\sqrt{3}\)sin2x=1

<=>1-sin2x+\(\sqrt{3}\)sin2x-1=0

<=>(\(\sqrt{3}\)-1)sin2x=0

<=>sinx=0<=>x=k\(\Pi\)(k thuộc Z)

d)

pt<=>\(\sqrt{3}\)sin7x-cos7x=\(\sqrt{2}\)

Khúc này bạn coi SGK trang 35 người ta giả thích rõ ràng rồi

pt<=>\(\dfrac{\sqrt{3}}{2}\)sin7x-\(\dfrac{1}{2}\)cos7x=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=sin\(\dfrac{\Pi}{4}\)

Tới đây bạn tự giải nhé, giải ra nghiệm rồi kiểm tra xem nghiệm nào thuộc khoảng ( đề cho) rồi kết luận

14 tháng 8 2017

Câu d) mình nhầm nhé

<=>sin(7x-\(\dfrac{\Pi}{6}\))=\(\dfrac{\sqrt{2}}{2}\) mới đúng sorry