Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://olm.vn/hoi-dap/question/425436.html
\(\frac{5^2.6^{11}.16^2+6^2.12^6.15^2}{2.6^{12}.10^4-81^2.960^3}=\frac{5^2.6^{11}.6^2.6^2.6^6.2^6.3^2.5^2}{2.2^{12}.3^{12}2^4.5^4-3^8.2^{15}.3^3}=\frac{5^6.6^{21}.2^8.3^2}{2^{17}.3^{12}.5^4-3^{11}.2^{15}}=\frac{5^6.3^{23}.2^{29}}{3^{11}.2^{15}.\left(2^2.3.5^4-1\right)}=\frac{5^6.3^{13}.2^{14}}{2^2.3.5^4-1}\)
Ta có:
\(\frac{5^2.6^{11}.16^6.12^6.15^2}{2.6^{12}.10^4-81^2.960^3}\Leftrightarrow\frac{5^2.6^{11}.16^6.12^2.15^2}{2.6^{11}.6.10^4-81^2.960^3}\)
\(\Leftrightarrow\frac{5^2.16^6.12^2.15}{2.6.10^4-81^2.960^3}\Leftrightarrow\frac{5^2.16^2.12.12.15}{\left(2.6\right).10^4-81^2.960^3}\)
\(\Leftrightarrow\frac{5^2.16^2.12.12.15}{12.10^4-81^2.960^3}\Leftrightarrow\frac{5^2.16^2.12.15}{10^4-81^2.960}\)
\(\Leftrightarrow\frac{5^2.16^2.12.3.5}{10^4-3^8.960}\Leftrightarrow\frac{5^2.16^2.12.3.5}{10^4-3^7.3.960}\Leftrightarrow\frac{5^2.16^2.12.5}{10^4-3^7.960}\)
Ps: Không chắc chắn đúng! Thầy cũng cho mình làm bài này hôm nay. Mình cũng làm cách tương tự như trên nhưng chưa biết đúng hay sai! Bạn thông cảm
làm cách trình bày ra nhé biết kết quả là \(\frac{388}{7199}\)
Đặt \(A=\frac{\left(5^2.6^{11}.16^2+6^2.12^6.15^2\right).10}{2.6^{12}.10^4-81^2.960^3}\)
\(A=\frac{\left(5^2.2^{11}.3^{11}.2^8+2^2.3^2.3^3.2^{12}.3^2.5^2\right).10}{2.2^{12}.3^{12}.2^4.5^4-9^4.2^{18}.3^3.5^3}\)
\(A=\frac{5^2.2^{11}.3^{11}.2^8.2.5+2^2.3^2.2^{12}.3^25^2.2.5}{2^{15}.\left(2^2.3^{12}.5^4-9^4.2^3.3^3.5^3\right)}\)
\(A=\frac{2^{15}\left(5^3.2^5.3^{11}+3^4.5^3\right)}{2^{15}.\left(2^2.3^{12}.5^4-9^4.2^3.3^3.5^3\right)}\)
\(A=\frac{5^3.2^5.3^{11}+3^4.5^3}{2^2.3^{12}.5^4-9^4.2^3.3^3.5^3}\)
\(A=\frac{5^3\left(2^5.3^{11}+3^4\right)}{5^3\left(2^2.3^{12}.5-9^4.2^3.3^3\right)}\)\(A=\frac{2^5.3^{11}+3^4}{2^2.3^{12}.5-9^4.2^3.3^3}\)
\(A=\frac{3^4.\left(2^5.3^8.5+1\right)}{3^4\left(2^2.3^8.5-3^4.2^3.3^3\right)}\)
\(A=\frac{2^5.3^8.5+1}{2^2.3^8.5-3^4.2^3.3^3}\)
Cậu phân tích từ từ
$\frac{5^2.6^{11}.16^2+6^2.12^6.15^2}{2.6^{12}.10^4-81^2960^3}$52.611.162+62.126.1522.612.104−8129603= \(y=\frac{1}{x^2+\sqrt{x}}\)
\(y=\frac{1}{x^2+\sqrt{x}}\)