Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{35^3+5.35^2-5^3.7}{10.70^2+10^2.70-10^3}=\frac{5^3.7^3+5^3.7^2-5^3.7}{10^3.7^2+10^3.7-10^3}=\frac{5^3.7.\left(7^2+7-1\right)}{10^3.\left(7^2+7-1\right)}.\)
=> \(B=\frac{5^3.7}{10^3}=\frac{5^3.7}{2^3.5^3}=\frac{7}{2^3}=\frac{7}{8}\)
1) ta có x.y=-30=>y=\(-\frac{30}{x}\)
z-x=-12=> z=-12-x
nên y.z=\(-\frac{30}{x}.\left(-12-x\right)=42\)
\(=\frac{360}{x}-\frac{30x}{x}=42\)
\(=\frac{360-30x}{x}=42\)
\(=>360-30x=42x\)
\(=360-30x-42x=0\)
\(=360-72x=0\)
\(< =>72x=360\)
\(x=5\)=> \(y=-6\); \(z=-7\)
1.Ta có A= 710 +79 - 78
A= 78 .(72 +7 -1)
A=78 .55
=> A chia hết cho 11( vì có thừa số 55 chia hết cho 11)
a) ta có : \(z-x=-12\Leftrightarrow z=x-12\)
\(\Rightarrow yz=42\Leftrightarrow y\left(x-12\right)=42\Leftrightarrow xy-12y=42\)
\(\Leftrightarrow-30-12y=42\Leftrightarrow12y=-30-42=-72\Leftrightarrow y=\dfrac{-72}{12}=-6\)
ta có : \(y=-6\Rightarrow xy=-30\Leftrightarrow x.-6=-30\Leftrightarrow x=\dfrac{-30}{-6}=5\)
ta có : \(x=5\Rightarrow z=5-12=-7\)
vậy \(x=5;y=-6;z=-7\)
b) ta có :\(A=7^{10}+7^9-7^8=7^8.\left(7^2+7-1\right)=7^8.55=7^8.5.11⋮11\)
\(\Leftrightarrow7^8.5.11\) chia hết cho \(11\) \(\Leftrightarrow\) A chia hết cho 11
vậy A chia hết cho 11 (đpcm)
a)xy=30 ;yz=42=>\(y=\dfrac{30}{x}\);\(y=\dfrac{42}{z}\)
Do đó \(\dfrac{30}{x}=\dfrac{42}{z}\)
Áp dụng t/c của dãy tỉ số bằng nhau,tac có:
\(\dfrac{30}{x}=\dfrac{42}{z}\)=\(\dfrac{42-30}{z-x}\)=\(\dfrac{12}{-12}=-1\)
=>x=-30;z=-42
Do đó y=\(\dfrac{30}{x}=\dfrac{30}{-30}=-1\)
\(C=\dfrac{2^6\cdot3^{10}}{3^9\cdot2^6}=3\\ D=\dfrac{3^{24}\cdot3^{10}}{3^{21}\cdot3^{11}}=\dfrac{3^{34}}{3^{32}}=3^2=9\\ F=\dfrac{2^{45}\cdot5^{14}}{5^{15}\cdot2^{47}}=\dfrac{1}{2^2\cdot5}=\dfrac{1}{20}\\ G=\dfrac{2^2\cdot5^2\cdot5^3}{2^3\cdot5^4}=\dfrac{1\cdot5}{2}=\dfrac{5}{2}\)
C=3
D=9
F=1/20
G=5/2
Em ko giải chi tiết vì nó lâu
Mong thông cảm!
Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !
p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.
\(B=\dfrac{35^3+5\cdot35^2-5^3\cdot7}{10\cdot70^2+10^2\cdot70-10^3}=\dfrac{\left(5\cdot7\right)^3+5\cdot\left(5\cdot7\right)^2-5^3\cdot7}{2\cdot5\cdot\left(2\cdot5\cdot7\right)^2+\left(2\cdot5\right)^2\cdot2\cdot5\cdot7-\left(2\cdot5\right)^3}=\dfrac{5^3\cdot7^3+5\cdot5^2\cdot7^2-5^3\cdot7}{2\cdot5\cdot2^2\cdot5^2\cdot7^2+2^2\cdot5^2\cdot2\cdot5\cdot7-2^3\cdot5^3}=\dfrac{5^3\cdot7^3+5^3\cdot7^2-5^3\cdot7}{2^3\cdot5^3\cdot7^2+2^3\cdot5^3\cdot7-2^3\cdot5^3}=\dfrac{5^3\left(7^3+7^2-7\right)}{2^3\cdot5^3\left(7^2+7-1\right)}=\dfrac{343+49-7}{8\cdot\left(49+7-1\right)}=\dfrac{385}{8\cdot55}=\dfrac{385}{440}=\dfrac{7}{8}\)
Vậy \(B=\dfrac{7}{8}\)