Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ A=1+\left[\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\left[\dfrac{2\sqrt{a}-1}{1-\sqrt{a}}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)-\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1-a-\sqrt{a}\right)}{-\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{-\sqrt{a}\left(2\sqrt{a}-1\right)}{\left(a+\sqrt{a}+1\right)\left(2\sqrt{a}-1\right)}\\ A=1-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+\sqrt{a}+1-\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)
\(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(đk:a>0,a\ne1\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+2}=\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}}\)
Để A nguyên
\(\Leftrightarrow A=\dfrac{\sqrt{a}-2}{\sqrt{a}}=1-\dfrac{2}{\sqrt{a}}\in Z\)
Do \(\sqrt{a}>0,\sqrt{a}\ne1\)
\(\Leftrightarrow\sqrt{a}\inƯ\left(2\right)=\left\{2\right\}\)
\(\Leftrightarrow a=4\)
a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)
=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)
check giùm mik
a) Tại x=16 thì A = \(\dfrac{\sqrt{16}-1}{\sqrt{16}+2}=\dfrac{4-1}{4+2}=\dfrac{1}{2}\)
b) B = \(\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
= \(\dfrac{\sqrt{x}+1+x-\sqrt{x}}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)
= \(\dfrac{x+1}{\sqrt{x}}\)
B = \(\dfrac{x+1}{\sqrt{x}}\)= 2
⇒ x + 1 = 2\(\sqrt{x}\)
⇒ x - \(2\sqrt{x}\) +1 = 0
⇒ \(\left(\sqrt{x}-1\right)^2\) = 0
⇒ \(\sqrt{x}-1=0\)
⇒ x = 1
a) \(C=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(a>0.a\ne1\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1-\sqrt{a}-2}{\sqrt{a}-1}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{-1}{\sqrt{a}-1}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(1-\sqrt{a}\right)=-\dfrac{1}{\sqrt{a}}\)
b) \(C=\dfrac{1}{4}\Rightarrow-\dfrac{1}{\sqrt{a}}=\dfrac{1}{4}\Rightarrow\sqrt{a}=-4\) (vô lý) \(\Rightarrow\) không có a thỏa đề
Với a >= 0 ; a khác 9
\(P=\dfrac{2a-6\sqrt{a}+a+4\sqrt{a}+3-3-7\sqrt{a}}{a-9}=\dfrac{3a-9\sqrt{a}}{a-9}=\dfrac{3\sqrt{a}}{\sqrt{a}+3}\)
b, Để hàm số trêm là hàm bậc nhất khi a khác 0
Cho (d') : y = ax - 4 Để (d') cắt (d) khi a khác -3
Thay y = 5 vào (d) ta được <=> 5 = -3x + 2 <=> x = -1
(d) cắt (d') tại A(-1;5)
<=> 5 = -a - 4 <=> a = -9 (tm)
Lời giải:
ĐKXĐ: $x>0$
a. \(P=\frac{x-1}{\sqrt{x}}:\left[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x-1}{\sqrt{x}}:\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{(\sqrt{x}+1)^2}{\sqrt{x}}\)
b.
\(x=\frac{4}{4+2\sqrt{3}}=(\frac{2}{\sqrt{3}+1})^2\Rightarrow \sqrt{x}=\frac{2}{\sqrt{3}+1}\)
\(P=\frac{(\frac{2}{\sqrt{3}+1}+1)^2}{\frac{2}{\sqrt{3}+1}}=\frac{3+3\sqrt{3}}{2}\)
a: Ta có: \(P=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)
Cảm ơn bn nhìu nhoa!