Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài hình chữ nhật là x thì chiều rộng là 720/x (x > 0) (m)
Theo bài ra ta có: (x + 10)(720/x - 6) = 720
<=> 720 - 6x + 7200/x - 60 = 720
=> 6x^2 - 7200 + 60x = 0
<=> x^2 + 10x - 1200 = 0
<=> x^2 + 40x - 30x - 1200 = 0
<=> x(x + 40) - 30(x + 40) = 0
<=> (x + 40)(x - 30) = 0
<=> x = 30 (Vì x > 0)
Vậy chiều dài là 30 m, chiều rộng là 720/30 = 24 m
Gọi chiều rộng là a
Do chiều dài gấp 2 lần chiều rộng nên chiều dài là 2a
Ta có phương trình :
\(a.2a=\left(a+1\right)\left(2a-4\right)+14\)
\(\Leftrightarrow2a^2=2a^2-4a+2a-4+14\)
\(\Leftrightarrow2a=10\)
\(\Leftrightarrow a=5\)
Vậy chiều rộng là 5 m
Chiều dài là 10 m
Diện tích là 5 x 10 = 50 \(m^2\)
Chu vi là ( 5 + 10 ) x 2 = 30 m
Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))
Vì khi giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông nên ta có phương trình:
\(\left(a-1\right)=b+1\)
\(\Leftrightarrow a-b=2\)(1)
Vì diện tích của mảnh vườn là 168m2 nên ta có phương trình: ab=168(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=2\\ab=168\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+2\right)\cdot b=168\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b-168=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b+1=169\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+1\right)^2=169\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b+1=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14\\b=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh vườn là 14m
Chiều rộng của mảnh vườn là 12m
Gọi \(x,y\left(m\right)\) là chiều dài, rộng \(\left(x,y>0\right)\)
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x=y+7\\36\%x=20\%y+3,32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=7\\36\%x-20\%y=3,32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12\left(n\right)\\y=5\left(n\right)\end{matrix}\right.\)
Diện tích là : \(12.5=60\left(m^2\right)\)
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề, ta có: b-a=7 và 36%b-20%a=3,32
=>a=5 và b=12
=>Diện tích là 5*12=60m2
Gọi chiều rộng của mảnh vườn ban đầu là x>0 (m)
Chiều dài ban đầu: \(x+2\) (m)
Sau khi tăng kích thước thì chiều rộng là: \(x+3\) (m)
Chiều dài khu vườn sau khi giảm: \(x+1\) (m)
Theo bài ra ta có pt:
\(\left(x+3\right)\left(x+1\right)=99\)
\(\Leftrightarrow x^2+4x-96=0\Rightarrow\left[{}\begin{matrix}x=-12\left(loại\right)\\x=8\end{matrix}\right.\)
Diện tích khu vườn ban đầu: \(8.\left(8+2\right)=80\left(m^2\right)\)
Gọi chiều dài và chiều rộng lần lượt là a,b
Theo đề, ta có: a-1=b+1
=>a-b=2
=>a=b+2
Ta có: ab=168
=>b(b+2)=168
\(\Leftrightarrow b^2+2b-168=0\)
=>b=12
Vậy: Chiều dài và chiều rộng là 14m và 12m