Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(x) chia hết cho x^2+x+1
=>\(x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1-ax+b+1⋮x^2+x+1\)
=>-a=0 và b+1=0
=>a=0 và b=-1
b: \(\dfrac{f\left(x\right)}{x^2-1}=\dfrac{x^3-x+ax^2-a+x+b+a}{x^2-1}\)
\(=x+a+\dfrac{x+b+a}{x^2-1}\)
Để f(x) chia x^2-1 dư x+3 thì x+b+a=x+3
=>b+a=3
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
f(x) chia hết cho x-2 nên f(x) = (x-2).g(x)
\(\Rightarrow f\left(2\right)=8+4a+2b+c=0\)
\(f\left(x\right)=\left(x^2-1\right).h\left(x\right)+2x\)
\(\Rightarrow f\left(1\right)=\left(1^2-1\right).h\left(x\right)+2=2=1+a+b+c\)
\(f\left(-1\right)=-2=1+a-b+c\)
Giải hệ 3 phương trình tìm được a,b,c
Gọi số người cần tìm là : a ( a < 1000 )
Theo đề bài, ta có :
(a - 15) chia hết cho 20;25;30
=> (a - 15) thuộc BC(20,25,30)
20 = 2^2 . 5
25 = 5^2
30 = 2.3.5
BCLN(20,25,30) = 2^2 .3.5 = 60
BC(20,25,30) = B(60) =(0,60,120,180,240,....,540,600)
=> a - 15 = (0,60,120,180,240,....,540,600,...)
a = (75,135,195,255,...,555,615,...)
vì a chia hết cho 41
=> a =615
Bài 2
\(A⋮B\)
\(\Leftrightarrow10x^3-15x^2-8x^2+12x+2x-3-2⋮2x-3\)
\(\Leftrightarrow2x-3\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{2;1\right\}\)