K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

\(a^3+b^3+c^3-3abc=0\)

\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(=>\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)

\(=>\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(=>\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0

\(=>a+b+c\ne0\)

\(=>a^2+b^2+c^2-ab-bc-ac=0\)

\(=>2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)

Vì : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\) (với mọi a,b,c)

Để (1) thì \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}=>a=b=c}\)

Vậy tam giác đã cho là tam giác đều

NV
26 tháng 3 2023

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(a;b;c>0\)

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Hay tam giác ABC đều

NV
23 tháng 7 2021

a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Hay tam giác ABC đều

8 tháng 10 2019

tam giác đều

8 tháng 10 2019

tam giác đều nha.

24 tháng 3 2018

         \(a^3+b^3+3abc>c^3\)

\(\Leftrightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc\right)-3ab\left(a+b-c\right)>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac+bc\right)>0\)

\(a,\)\(b,\)\(c\)  là 3 cạnh tam giác   

\(\Rightarrow\)\(a+b-c>0\)(BĐT tam giác)

         \(a^2+b^2+c^2+Ab+ac+bc>0\)  do  a,b,c  >0

suy ra:  \(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac\right)>0\)

\(\Rightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Rightarrow\)\(a^3+b^3+3abc>c^3\)

P/S: phần BĐT mk trình bày kém, mong các bn giúp đỡ

24 tháng 3 2018

Trong một tam giác thì: a + b > c

=>    (a + b)3 > c3

<=>  a3 + b3 + 3ab(a + b) > c3

mà a + b > c => 3ab(a + b) > 3abc

=> a3 + b3 + 3ab(a + b) > a3 + b3 + 3abc > c3

15 tháng 5 2015

bạn vào câu hỏi tương tự ấy !!! Nó để là tam giác đều !!!

13 tháng 3 2017

tink cho minh nhe

12 tháng 3 2017

\(a^3-b^3-c^3=3abc\)

\(\Rightarrow a^3-b^3-c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà \(a+b+c\ne0\) (độ dài 3 cạnh của 1 tam giác)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

Do đó tam giác ABC là tam giác đều 

13 tháng 3 2017

a = b = c nha!

tk nha

21 tháng 3 2018

tam giác đều

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$

Áp dụng BĐT AM-GM:

$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$

$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên: 

$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$

$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)

Ta có đpcm.