Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc cano là x (km/h,x>0) và vận tốc dòng nước là y(km/h,y>0)
Vận tốc cano xuôi dòng là x+y(km/h)
Vận tốc cano ngược dòng là x-y(km/h)
thời gian cano xuôi dòng khúc sông 60km là \(\frac{60}{x+y}\)
Thời gian cano ngược dòng 48km là \(\frac{48}{x-y}\)
tổng thời gian là 6h nên ta có pt: \(\frac{60}{x+y}\)+\(\frac{48}{x-y}\)=6
Tưiong tự ta có pt \(\frac{40}{x+y}\)+\(\frac{80}{x-y}\)=7
Ta có hpt \(\hept{\begin{cases}\frac{60}{x+y}+\frac{48}{x-y}=6\\\frac{40}{x+y}+\frac{80}{x-y}=7\end{cases}}\)
Đặt ẩn phụ giải ra ta đc \(\hept{\begin{cases}x+y=20\\x-y=16\end{cases}}\)
nên x=18,y=2
kl
Gọi \(a,b\) lần lượt là vận tốc riêng của ca nô và vận tốc dòng nước \(\left(a>b>0\right)\).
Thời gian ca nô đi xuôi dòng khúc sông \(60km\) là : \(\dfrac{60}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(48km\) là : \(\dfrac{48}{a-b}\left(h\right)\).
Theo đề bài thì \(\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\left(1\right)\).
Thời gian ca nô đi xuôi dòng \(40km\) là : \(\dfrac{40}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(80km\) là : \(\dfrac{80}{a-b}\left(h\right)\)
Cũng theo đề bài, ta có : \(\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\left(2\right)\).
Từ \((1)\) và \((2)\), ta có hệ phương trình :
\(\left\{{}\begin{matrix}\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\\\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\end{matrix}\right.\left(I\right)\)
Đặt : \(x=\dfrac{20}{a+b}\) và \(y=\dfrac{16}{a-b}\). Hệ \((I)\) được viết lại thành :
\(\left\{{}\begin{matrix}3x+3y=6\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\2x+5y=7\end{matrix}\right.\)
Hay : \(\left\{{}\begin{matrix}5x+5y=10\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{20}{a+b}=1\\\dfrac{16}{a-b}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=20\\a-b=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=36\\a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=18\\b=2\end{matrix}\right.\) (thỏa mãn).
Vậy : Vận tốc riêng của ca nô là \(18(km/h)\) và vận tốc dòng nước là \(2(km/h).\)
Gọi vận tốc riêng của cano là x (km/h) với x>0
Gọi vận tốc của dòng nước là y (km/h) với y>0 và y<x
Vận tốc cano khi xuôi dòng: \(x+y\) (km/h)
Vận tốc cano khi ngược dòng: \(x-y\) (km/h)
Do cano xuôi dòng 60km và ngược dòng 48km hết 6h nên ta có:
\(\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\)
Do cano xuôi dòng 40km và ngược dòng 80km thì hết 7h nên ta có:
\(\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\\\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{120}{x+y}+\dfrac{240}{x-y}=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{144}{x-y}=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=16\\\dfrac{120}{x+y}+\dfrac{96}{16}=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=16\\x+y=20\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=2\end{matrix}\right.\)
Lời giải:
Gọi vận tốc xuôi dòng là $a$ (km/h) và vận tốc ngược dòng là $b$ (km/h)
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{96}{a}+\frac{48}{b}=5\\ \frac{48}{a}+\frac{60}{b}=4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{32}\\ \frac{1}{b}=\frac{1}{24}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=32\\ b=24\end{matrix}\right.\) (km/h)
Vận tốc riêng của cano: $(32+24):2=28$ (km/h)
Vận tốc dòng nước: $32-28=4$ (km/h)
Gọi vận tốc ca nô là x
Gọi vận tốc dòng nước là y (đơn vị km/h ; x,y > 0 )
Theo đề ta có
vận tốc khi xuôi dòng : x + y
vận tốc khi ngược dòng : x - y
2h30p=2.5h=5/2h
1h20p=4/3h
\(\frac{S}{v_{xuôi}}+\frac{S}{v_{ngược}}=\frac{12}{x+y}+\frac{12}{x-y}=\frac{5}{2}\)
\(\frac{4}{x+y}+\frac{8}{x-y}=\frac{4}{3}\)
Từ trên ta có HPT \(\hept{\begin{cases}\frac{12}{x+y}+\frac{12}{x-y}=\frac{5}{2}\\\frac{4}{x+y}+\frac{8}{x-y}=\frac{4}{3}\end{cases}}\)
Gọi \(x+y=a;x-y=b\)
\(\Leftrightarrow\hept{\begin{cases}\frac{12}{a}+\frac{12}{b}=\frac{5}{2}\\\frac{4}{a}+\frac{8}{b}=\frac{4}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{12}{a}+\frac{12}{b}=\frac{5}{2}\\\frac{12}{a}+\frac{24}{b}=\frac{12}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{12}{b}=\frac{3}{2}\\\frac{12}{a}+\frac{24}{b}=\frac{12}{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=8\\\frac{12}{a}+\frac{24}{8}=\frac{12}{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=8\\a=12\end{cases}}\)
\(\Rightarrow b=x-y=8;a=x+y=12\)
\(\Rightarrow x=10;y=2\)
PT Trên có 1 nghiệm (x;y) = (10;2 )
gọi x là vận tốc khi xuôi dòng( x>0) (km/h)
gọi y là vận tốc ngược dòng(y>0) (km/h)
*, ca nô chạy trên sông trong 8 giờ:
xuôi dòng 81km:81/x và ngược dòng 105km: 105/y
=> phương trinh: 81/x + 105/y=8 (1)
*,ca nô chạy trong 4 giờ:
xuôi dòng 54km: 54/x và ngược dòng 42km: 42/y
=> ph trình: 54/x + 42/y = 4 (2)
từ (1) và (2) ta có hệ pt:
....
....
..... => x=27km/h
y=21km/h
Gọi vận tốc riêng của cano là \(x\left(km/h\right),x>4\).
Vận tốc khi cano đi xuôi dòng là: \(x+4\left(km/h\right)\).
Thời gian cano đi xuôi dòng là: \(\frac{120}{x+4}\left(h\right)\).
Vận tốc khi cano đi ngược dòng là: \(x-4\left(km/h\right)\).
Thời gian cano đi ngược dòng là: \(\frac{96}{x-4}\left(h\right)\).
Ta có phương trình:
\(\frac{96}{x-4}-\frac{120}{x+4}=1\)
\(\Rightarrow96\left(x+4\right)-120\left(x-4\right)=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2+24x-880=0\)
\(\Leftrightarrow x=20\)(vì \(x>4\))
.
Gọi x (km/h) là vận tốc riêng của cano.(x>0)
Gọi y (km/h) là vận tốc dòng nước.(y>0)
Theo đề bài ta có hệ phương trình:
\(\hept{\begin{cases}\frac{81}{x+y}+\frac{105}{x-y}=8\\\frac{54}{x+y}+\frac{42}{x-y}=4\end{cases}}\)
Giải ra ta được:
\(\hept{\begin{cases}x+y=27\\x-y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=24\\y=3\end{cases}}}\)
Vậy vận tốc riêng của cano là 24km/h.
Vận tốc dòng nước là 3km/h
Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)
Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h
HOK TOT
gọi vận tốc ca nô xuôi dòng là x+y(km/h)(x>0)
vận tốc ca nô ngược dòng là :x-y(km/h)(y>0)(x>y)
ta có hệ pt: \(\left\{{}\begin{matrix}\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\\\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\end{matrix}\right.\)
giải hệ pt trên bằng cách đặt\(\dfrac{1}{x+y}=a\) và \(\dfrac{1}{x-y}=b\)
=>\(\left\{{}\begin{matrix}60a+48b=6\\40a+80b=7\end{matrix}\right.\) giải hệ pt này =>\(\left\{{}\begin{matrix}a=\dfrac{1}{20}\\b=\dfrac{1}{16}\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{20}\\\dfrac{1}{x-y}=\dfrac{1}{16}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=20\\x-y=16\end{matrix}\right.< =>\left\{{}\begin{matrix}x=18\left(TM\right)\\y=2\left(TM\right)\end{matrix}\right.\)
vậy vận tốc riêng ca nô là 18km/h , vận tốc dòng nước là 2km/h