K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

1) \(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}=10\)

\(\Leftrightarrow\left(x^2+2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}\right)+\left(16y^2+2\cdot4y\cdot\frac{1}{y}+\frac{1}{y^2}\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(4y+\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{x}=0\\4y+\frac{1}{y}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\4y^2+1=0\end{cases}}\) ( vô lí )

Phương trình vô nghiệm

22 tháng 2 2020

Câu 1 giống bạn kia:

Câu 2:Sửa đề nhé, tại thấy a,b thuộc N

\(M=\frac{b}{7\left(a+b\right)}\) ( đkxđ:\(a\ne-b\))

\(\Rightarrow\frac{1}{M}=\frac{7a}{b}+7\ge7\)\(\)( \(a,b\in N\Rightarrow a,b\ge0\))

\(\Rightarrow M\le7\)

\(\Rightarrow M\)đạt GTLN là 7 khi \(\text{a=0}\) và  \(b\ne0\)

15 tháng 6 2018

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................

29 tháng 11 2019

mik đag cần gấp các bn giải nhanh dùm mik nha

30 tháng 6 2017

a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)

=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)

\(=\frac{4x}{\left(x+1\right)^2}\)=VP

b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)

=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)

=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP

c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)

\(=x+y=\)VP

Vậy các đẳng thức được chứng minh

=

30 tháng 6 2017

C là xy mà ko phải x+y

4 tháng 10 2018

\(\frac{(b-c)(1+a)^2}{x+a^2}+\frac{(c-a)(1+b)^2}{x+b^2}+\frac{(a-b) (1+c)^2}{x+c^2}=0\)

\(\Leftrightarrow \sum (b-c)(1+a)^2(x+b^2)(x+c^2)=0\)

\(\Leftrightarrow (a-b)(b-c)(c-a)(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca)=0\)

\(\Leftrightarrow x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Xét phương trình  \(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Ta thấy \(\Delta=(2a+2b+2c+ab+bc+ca-1)^2+8(a+b+c-abc)\)

Nếu \(\Delta <0\) thì phương trình vô nghiệm

Nếu \(\Delta =0\) thì phương trình có nghiệm kép

Nếu \(\Delta >0\) thì phương trình có hai nghiệm