K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

a)

<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305

b)

Ôn tập toán 6

10 tháng 4 2017

a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)

\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)

\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{308}\)

308.1 = (x + 3).1

308 = x + 3

x = 308 - 3

x = 305

16 tháng 4 2017

a)\(\left(-x-\dfrac{1}{9}\right)^2=\dfrac{4}{9}\)

\(\Rightarrow\left(-x-\dfrac{1}{9}\right)^2=\left(\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^2\)

*)Xét \(\left(-x-\dfrac{1}{9}\right)^2=\left(\dfrac{2}{3}\right)^2\)

\(\Rightarrow-x-\dfrac{1}{9}=\dfrac{2}{3}\Rightarrow-x=\dfrac{7}{9}\Rightarrow x=-\dfrac{7}{9}\)

*)Xét \(\left(-x-\dfrac{1}{9}\right)^2=\left(-\dfrac{2}{3}\right)^2\)

\(\Rightarrow-x-\dfrac{1}{9}=-\dfrac{2}{3}\Rightarrow-x=-\dfrac{5}{9}\Rightarrow x=\dfrac{5}{9}\)

b)\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=1\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)

\(\Rightarrow2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1991}{3986}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1991}{3986}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1991}{3986}\)\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1993}\)

\(\Rightarrow x+1=1993\Rightarrow x=1992\)

13 tháng 3 2017

Các bạn giúp tớ với, sáng mai mình học rồi.hihihihihahavui

13 tháng 3 2017

a)\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)

16 tháng 11 2018

1/

a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)

\(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)

\(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)

16 tháng 11 2018

b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993

2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993

2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993

2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993

2.(1 − 1/x+1) = 3984/1993

1 − 1/x + 1= 3984/1993 :2

1 − 1/x+1 = 1992/1993

1/x+1 = 1 − 1992/1993

1/x+1=1/1993

<=>x+1 = 1993

<=>x+1=1993

<=> x+1=1993

<=> x = 1993-1

<=> x = 1992

31 tháng 8 2017

\(a,\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.3.\left[\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left(\dfrac{1}{5-1}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}.\dfrac{1}{3}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{3}-\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3\)

\(x=305\)

\(b,1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(x+1\right):2}=1\dfrac{1991}{1993}\)

\(\dfrac{1}{2}.\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{x.\left(x+1\right):2}\right)=\dfrac{3984}{3986}\)

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{8}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+...+x+1-\dfrac{x}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=1-\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)

=>\(x+1=1993\)

\(x=1993-1\)

\(x=1992\)

18 tháng 4 2022

a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)

Th1 : \(x-\dfrac{1}{2}=0\)

         \(x=0+\dfrac{1}{2}\)

         \(x=\dfrac{1}{2}\)

Th2 : \(-3-\dfrac{x}{2}=0\)

         \(\dfrac{x}{2}=-3\)

         \(x=\left(-3\right)\cdot2\)

         \(x=-6\)

Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)

b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)

    \(x=\dfrac{5}{8}+\dfrac{1}{8}\)

   \(x=\dfrac{3}{4}\)

c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)

                \(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)

                \(\dfrac{3}{2}+x=\dfrac{3}{2}\)

                       \(x=\dfrac{3}{2}-\dfrac{3}{2}\)

                      \(x=0\)

d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)

    \(x+\dfrac{1}{3}=-4\)

    \(x=-4-\dfrac{1}{3}\)

    \(x=-\dfrac{13}{3}\)