Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Tìm n thuộc N sao cho
1, n + 2 : hết cho n + 1
\(n+2⋮n+1\)
\(\Rightarrow n+1+1⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
n + 1 = -1 => n = -1 - 1 = -2
n + 1 = 1 => n = 1 - 1 = 0
Vậy n = -2 hoặc 0, mà n thuộc N (theo đề bài)
=> n = 0
2, 2n + 7 : hết cho n + 1
\(2n+7⋮n+1\)
\(\Rightarrow2n+2+5⋮n+1\)
mà \(2n+2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
n + 1 = -5 => n = -6
n + 1 = -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 5 => n = 4
Vậy n \(\in\left\{-6;-2;0;4\right\}\)mà n thuộc N
=> n = 0 hoặc 4
- Các câu tiếp theo của b1 làm tương tự nhé :))
Làm mẫu 1 vài câu thôi nhé :))
Bài 2. Tìm các chữ số x,y biết
2, 2x85y : hết cho cả 2 , 3 , 5
2x85y : hết cho 2 và 5 => y = 0
Để 2x850 : hết cho 3 thì 2 + x+ 8 + 5 + 0 phải : hết cho 3
=> 15 + x chia hết cho 3
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=6\\x=9\end{matrix}\right.\)
Vậy để 2x85y : hết cho cả 2 , 3 , 5 thì y = 0 và x = 0 hoặc x = 3 hoặc x = 6 hoặc x = 9
3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1
2x3y : hết cho cả 2 và 5 => y = 0
2x30 chia cho 9 dư 1 => 2 + x + 3 + 0 - 1 chia hết cho 9
=> 4 + x chia hết cho 9
=> x = 5
Vậy 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 khi y = 0 và x = 5
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155