K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

cậu t đi

11 tháng 12 2016

\(5^{2016}\) ?

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

29 tháng 7 2019

#)Giải :

1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)

\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn

29 tháng 7 2019

a) Ta có: n + 7 = (n + 3) + 4

Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

n + 3 1 -1 2 -2 4 -4
  n -2 -4 -1 -5 1 -7

Vậy ...

b) Ta có: 2n + 5 = 2(n + 3) - 1

Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(1) = {1; -1}

Với: n + 3 = 1 => n = 1 - 3 = -2

n + 3 = -1 => n= -1 - 3 = -4

Vậy ...

6 tháng 10 2017

Câu 1:

a) n+4 chia hết cho n

suy ra 4 chia hết cho n(vì n chia hết cho n)

suy ra n thuộc Ư(4) {1;2;4}

Vậy n {1;2;4}

b) 3n+7 chia hết cho n

suy ra 7 chia hết cho n(vì 3n chia hết cho n)

suy ra n thuộc Ư(7) {1;7}

Vậy n {1;7}

c) 27-5n chia hết cho n

suy ra 27 chia hết cho n(vì 5n chia hết cho n)

suy ra n thuộc Ư(27) {1;3;9;27}

Vậy n {1;3;9;27}

d) n+6 chia hết cho n+2 

suy ra (n+2)+4 chia hết cho n+2

suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)

suy ra n+2 thuộc Ư(4) {1;2;4}

n+2 bằng 1 (loại)

n+2 bằng 2 suy ra n bằng 0

n+2 bằng 4 suy ra n bằng 2

Vậy n {0;2}

e) 2n+3 chia hết cho n-2

suy ra 2(n-2)+7 chia hết cho n-2

suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)

suy ra n-2 thuộc Ư(7) {1;7}

n-2 bằng 1 suy ra n bằng 3

n-2 bằng 7 suy ra n bằng 9

Vậy n {3;9}