Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+y\right|\) cùng tính chẵn lẻ với \(x+y\)
\(\left|y-z\right|\) cùng tính chẵn lẻ với \(y-z\)
\(\left|z-t\right|\) cùng tính chẵn lẻ với \(z-t\)
\(\left|t-x\right|\) cùng tính chẵn lẻ với \(t-x\)
'\(\Rightarrow\left|x+y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng tính chẵn lẻ với \(x+y+y-z+z-t+t-x=2y⋮2\)
Mà \(2011⋮̸2\rightarrow ptvn\)
Vì :
| x - y | cùng tính chất chẵn lẻ với x - y
| y - z | cùng tính chất chẵn lẻ với y - z
| z - t | cùng tính chất chẵn lẻ với z - t
| t - x | cùng tính chất chẵn lẻ với t - x
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=\left(x-x\right)+\left(y-y\right)+\left(z-z\right)+\left(t-t\right)=0\)
là số chẵn
= > \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\)là số chẵn
Mà 2017 là số lẻ \(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\ne2017\)
= > không có các số thỏa mãn
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)
Ta có : \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=20092009\)
\(\Rightarrow\left|x-y+y-z+z-t+t-x\right|=20092009\)
\(\Rightarrow\left|0\right|=20092009\)
\(\Rightarrow0=20092009\) ( Vô lý )
\(\Rightarrow\) Không có giá trị thõa mãn \(x,y,t,z\)
Ta có:
(x - y) + (y - z) + (z - t) + (t - x)
= x - y + y - z + z - t + t - x
= 0, là số chẵn
Do |x - y| + |y - z| + |z - t| + |t - x| luôn cùng tính chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)
=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn
Mà theo đề bài |x - y| + |y - z| + |z - t| + |t - x| = 20092009, là số lẻ, vô lý
Vậy không tồn tại giá trị của x; y; z; t là số nguyên thỏa mãn đề bài
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
Không mất tính tổng quát giả sử \(x\ge y\ge z\ge t\)
Khi đó: \(\left\{{}\begin{matrix}x-y\ge0\\y-z\ge0\\z-t\ge0\\t-x\le0\end{matrix}\right.\) Hay \(\left\{{}\begin{matrix}\left|x-y\right|=x-y\\\left|y-z\right|=y-z\\\left|z-t\right|=z-t\\\left|t-x\right|=x-t\end{matrix}\right.\)
\(pt\Leftrightarrow x-y+y-z+z-t+x-t=2017\)
\(\Rightarrow2\left(x-t\right)=2017\Leftrightarrow x-t=\dfrac{2017}{2}\)
p/s: Tới đó thôi,t nghĩ đề bài thiếu.Có thể là x;y;z;t là số nguyên và suy ra vô nghiệm
Ta có:
|x-y| có cùng tính chẵn lẻ với x-y
|y-z| có cùng tính chẵn lẻ với y-z
|z-t| có cùng tính chẵn lẻ với z-t
|t-x| có cùng tính chẵn lẻ với t-x
=> |x-y| + |y-z| + |z-t| + |t-x| có cùng tính chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=0\) là số chẵn
=> |x-y| + |y-z| + |z-t| + |t-x| chẵn
Mà 2017 lẻ
=> Không có x,y,z,t thoả mãn đề bài
a)
TH1. nếu \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left|x\right|\ge\left|x+0\right|=\left|x\right|\\\left|y\right|\ge\left|0+y\right|=\left|y\right|\end{matrix}\right.\) hiển nhiên đúng
TH2.với x, y khác 0
x.y>0 nghĩa là x, y cùng dấu
\(\left|x+y\right|=\left|-x-y\right|=\left|x\right|+\left|y\right|\)
x.y<0 nghĩa là x, y trái dấu
\(\left|x+y\right|=\left|\left|x\right|-\left|y\right|\right|\)
Nếu \(\left|x\right|\ge\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|x\right|-\left|y\right|\)(1)
Nếu \(\left|x\right|\le\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|y\right|-\left|x\right|\)(2)
hiển nhiển \(\left|x\right|+\left|y\right|\) luôn lơn hơn (1) và (2)
TH1 và TH2 => dpcm
b) x,y,z,t có vai trò như nhau đối VT =>
không mất tính tổng quát g/s: \(\left|x\right|\ge\left|y\right|\ge\left|z\right|\ge\left|t\right|\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=\left|x\right|-\left|y\right|\\\left|y-z\right|=\left|y\right|-\left|z\right|\\\left|z-t\right|=\left|z\right|-\left|t\right|\\\left|t-x\right|=\left|x\right|-\left|t\right|\end{matrix}\right.\)
Cộng lại
VT =\(2\left(\left|x\right|-\left|t\right|\right)\) vậy VT luôn là một số chẵn VP là số lẻ => vô nghiệm