Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bất đẳng thức: với \(x,y>0\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Dấu \(=\)khi \(x=y\).
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)
\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)
Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)
\(P=\sum\frac{1}{\sqrt{x^2+y^2+4x^2+2xy+y^2}}\le\sum\frac{1}{\sqrt{2xy+4x^2+2xy+y^2}}=\sum\frac{1}{2x+y}\)
\(P\le\sum\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\le\frac{1}{3}\sqrt{2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}=\frac{\sqrt{2}}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
\(F\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
\(F\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
Dấu "=" xảy ra khi \(x=y=z=\frac{3}{4}\)
Bài này mà cũng cho vào chh làm gì vậy . Bài này t làm rồi nhé.
Câu hỏi của Mai Linh - Toán lớp 8 | Học trực tuyến
Áp dụng BĐT AM - GM ta có:
\(16F=\frac{\left(1+1+1+1\right)^2}{x+x+y+z}+\frac{\left(1+1+1+1\right)^2}{x+y+y+z}+\frac{\left(1+1+1+1\right)^2}{x+y+z+z}\)
\(\le\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
\(=4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\)
\(\Leftrightarrow F\le1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = \(\frac{3}{4}\)
Vậy Max F = 1 \(\Leftrightarrow x=y=z=\frac{3}{4}\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)
tương tự
\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);
\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);
cộng vế với vế => đpcm
Dấu "=" xảy ra <=> x=y=z=1
1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)
Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:
\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)
\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)
\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)
Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)
Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm
3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)
\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
Dấu '=' xảy ra ↔ a = b
Áp dụng BĐT trên, ta có:
\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự:
\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)
\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)
Cộng vế theo vế ba BĐT trên ta được:
\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)
Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)
Vậy GTLN của P là 3/4 khi x = y = z = 1/3
Lời giải:
BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)
Thật vậy, áp dụng BĐT AM-GM:
\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)
\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)
Nhân theo vế ta có BĐT $(*)$ luôn đúng
Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
1/ \(P=\frac{1}{x+y+x+z}+\frac{1}{x+y+y+z}+\frac{1}{x+z+y+z}\)
\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(P\le\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\le\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
Dấu "=" xảy ra khi \(x=y=z=\frac{3}{4}\)
2/ ĐKXĐ: ...
\(\Leftrightarrow4x^2-8x\sqrt{x+1}+3\left(x+1\right)\le0\)
\(\Leftrightarrow\left(2x-\sqrt{x+1}\right)\left(2x-3\sqrt{x+1}\right)\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge\sqrt{x+1}\\2x\le3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2-x-1\ge0\\4x^2-9x-9\le0\end{matrix}\right.\) \(\Rightarrow\frac{-1+\sqrt{17}}{8}\le x\le3\)
\(\Rightarrow x=\left\{1;2;3\right\}\Rightarrow\sum x^2=1+4+9=14\)