Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Ta có: \(\frac{a^4}{c}+\frac{b^4}{d}\ge\frac{\left(a^2+b^2\right)^2}{c+d}=\frac{1}{c+d}\)
Dấu = xảy ra khi \(\frac{a^2}{c}=\frac{b^2}{d}\)
Do đó: \(VT=\frac{a^2}{c}+\frac{b}{d^2}=\frac{d^2}{b}+\frac{b}{d^2}\ge2\sqrt{\frac{d^2}{b}.\frac{b}{d^2}}=2\)
Ta có:
\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)
\(=a+b+2\)
\(\Leftrightarrow a+b\ge2\)
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu \(=\) xảy ra khi \(a=b=1\).
Ta có: \(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\)
Tương tự: \(\frac{1}{b^2+1}==1-\frac{b^2}{b^2+1}\)
\(\frac{1}{c^2+1}==1-\frac{c^2}{c^2+1}\)
\(\frac{1}{d^2+1}==1-\frac{d^2}{d^2+1}\)
Đặt \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}=P\)
\(\Rightarrow P=4-\frac{a^2}{a^2+1}-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{d^2}{d^2+1}\)
Áp dụng BĐT AM-GM ta có:
\(P\ge4-\frac{a^2}{2a}-\frac{b^2}{2b}-\frac{c^2}{2c}-\frac{d^2}{2d}=4-\frac{a+b+c+d}{2}=4-\frac{4}{2}=4-2=2\)
Dấu " = " xảy ra \(\Leftrightarrow a^2=1;b^2=1;c^2=1;d^2=1\)
\(\Leftrightarrow a=b=c=d=1\)
\(\left(a+b^2\right)\left(a+1\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{1}{a+b^2}\le\dfrac{a+1}{\left(a+b\right)^2}\)
Tương tự: \(\dfrac{1}{b+a^2}\le\dfrac{b+1}{\left(a+b\right)^2}\)
\(\Rightarrow M\le\dfrac{a+b+2}{\left(a+b\right)^2}=\dfrac{2}{\left(a+b\right)^2}+\dfrac{1}{a+b}=\dfrac{2}{\left(a+b\right)^2}+\dfrac{1}{a+b}-1+1\)
\(\Rightarrow M\le\left(\dfrac{2}{a+b}-1\right)\left(\dfrac{1}{a+b}+1\right)+1=\left(\dfrac{2-a-b}{a+b}\right)\left(\dfrac{1}{a+b}+1\right)+1\le1\)
\(M_{max}=1\) khi \(a=b=1\)
Do \(abc=1\), nếu viết BĐT về dạng:
\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Có lẽ bạn sẽ nhận ra ngay. Một bài toán vô cùng quen thuộc.
Chắc với bài toán này thì bạn ko cần lời giải nữa, nó có ở khắp mọi nơi.
Bạn vào câu hỏi tương tự ý , có 1 bạn tên giống hệt bạn từng trả lời rồi đấy !
Bài này là tớ đăg lên ! Nhưg hôm nay thầy tớ giải rồi! Tớ đăg lời giải lên đây cho mấy bạn tham khảo ạ! ko kiếm GP nhá!
Câu 1 :
Vì x > y \(\Rightarrow\) \(x-y>0\)
\(\Rightarrow x^2+y^2\ge2\sqrt{2}.\left(x-y\right)\)
\(\Leftrightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y\ge0\)
Vì \(xy=1\Rightarrow x^2+y^2+\left(\sqrt{2}\right)^2-2\sqrt{2}x+2\sqrt{2}y-2xy\ge0\)
\(\Leftrightarrow\left(x-y-2\sqrt{2}\right)^2\ge0\)
Đúng với mọi x; y
Câu 2:
\(a^3+b^3+ab\ge\dfrac{1}{2}\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^3\right)+ab-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow a^2-ab+b^2+ab-\dfrac{1}{2}\ge0\) ( vì a+b = 1 )
\(\Leftrightarrow a^2+b^2-\dfrac{1}{2}\ge0\)
Vì \(a+b=1\Rightarrow b=1-a\)
\(\Rightarrow a^2+\left(1-a\right)^2-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow a^2+1-2a+a^2-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow2a^2-2a+\dfrac{1}{2}\ge0\)
\(\Leftrightarrow4a^2-4a+1\ge0\)
\(\Leftrightarrow\left(2a-1\right)^2\ge0\)
Đúng với mọi a;b
Dấu "=" xảy ra khi
\(2a-1=0\Rightarrow a=\dfrac{1}{2}\Rightarrow b=\dfrac{1}{2}\)
1) Với x > 0 ta có:
\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.
1: Áp dụng Bđt cosi, ta được:
\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)