Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A=> BC^2=BA^2+AC^2 (Pitago)
=> BC^2=3^2+4^2
=> BC^2=25
=> BC= căn 25=5cn
tam giác ABC có AD là pg=> DB/DC=AB/AC
=> DB/DC=3/4=> DB/3=DC/4=DB+DC/3+4=BC/7=5/7
vậy DB=5/7.3=15/7cm,DC=5/7.4=20/7cm
a: DB/DC=5/4
BC/CD=9/4
b: Xét ΔABH vuông tai H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng vói ΔCBA
b: \(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)
=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)
=> Δ AHB ∾ Δ CHA (cmt)
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)
Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))
\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)
\(AC=AD+DC=4+5=9\)
Ta có: \(AC^2=BC^2-AB^2\)
\(\to BC^2-AB^2=81\)
\(BD\) là đường phân giác \(\widehat{B}\)
\(\to\dfrac{BA}{AD}=\dfrac{BC}{DC}\)
\(\to\dfrac{BA}{4}=\dfrac{BC}{5}\)
\(\to\dfrac{BA^2}{16}=\dfrac{BC^2}{25}=\dfrac{BC^2-BA^2}{25-16}=\dfrac{81}{9}=9\)
\(\to\begin{cases}BA^2=144\\BC^2=225\end{cases}\)
\(\to\begin{cases}BA=12\\BC=15\end{cases}\)
Vậy \(BA=12cm, Bc=15cm\)
amXét \(\Delta ABC\)có AD là tia phân giác của \(\widehat{A}\)
Áp dụng tính chất của đường phân giác ,ta có:
\(\frac{DB}{DC}\)= \(\frac{AB}{AC}\)=\(\frac{4}{6}\)=\(\frac{2}{3}\)
b,theo câu a ta có :
\(\frac{DB}{DC}\)=\(\frac{2}{3}\)\(\Leftrightarrow\frac{DB}{3}\)=\(\frac{2}{3}\)
\(\Leftrightarrow DB=\frac{2.3}{3}\)
\(\Leftrightarrow DB=2\)