Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)
AB = 6; AC = 8
=> 6^2 + 8^2 = BC^2
=> BC^2 = 100
=> BC = 10 do BC > 0
Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2
=> AM = 10 : 2 = 5
b, xét tam giác BEC có : EM là trung tuyến
EM là đường cao
=> tam giác BEC cân tại E (định lí)
1:
a: \(BC=\sqrt{6^2+8^2}=10cm\)
=>AM=10/2=5cm
b: Xét ΔEBC có
EM vừa là đường cao, vừa là trung tuyến
=>ΔEBC cân tại E
Bài 2:
Xét ΔBAE vuông tại A và ΔBHE vuông tại H co
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
tự kẻ hình nha
a) vì tam giác ABC cân A=> AB=AC
xét tam giác ABM và tam giác ACM có
A1=A2(gt)
AB=AC(cmt)
AM chung
=> tam giác ABM= tam giác ACM(cgc)
=> AMB=AMC(hai góc tương ứng)
mà AMB+AMC=180 độ( kề bù)
=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC
b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)
=> M là trung điểm BC=> AM là trung tuyến
BQ là trung tuyến
mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC
c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm
ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12
vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm
d) vì MD//AC=> CAM=AMD( so le trong)
mà CAM=BAM(gt)
=> BAM=AMD=> tam giác AMD cân D=> AD=DM
vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM
vì AMD+DMB=AMB=> DMB=90 độ-AMD
mà AMD=BAM (cmt)
=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến
mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng