Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\dfrac{HD}{AD}=\dfrac{\Delta HBC}{\Delta ABC}\\ \dfrac{HE}{BE}=\dfrac{\Delta HAC}{\Delta ABC}\\ \dfrac{HF}{CF}=\dfrac{\Delta AHB}{\Delta ABC}\)
khi đó: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{\Delta HBC}{\Delta ABC}+\dfrac{\Delta HAC}{\Delta ABC}+\dfrac{\Delta HAB}{\Delta ABC}\\ =\dfrac{\Delta ABC}{\Delta ABC}=1\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \left(đpcm\right)\)
a) Do đg cao BE cắt đg cao CF ở H
=> H là trực tâm của tam giác ABC
=> AH là đg cao => AH ⊥ BC (đpcm)
b) Xét ΔAEB và ΔAFC có
\(\widehat{E}=\widehat{F}=90^0\)
\(\widehat{ABC}\) chung
=> ΔAEB ∼ ΔAFC
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
\(\Rightarrow AE\times AC=AF\times AB\left(đpcm\right)\)
c) Xét Δ AEF và ΔABC
\(\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
\(\widehat{ABC}\)chung
=> Δ AEF ∼ ΔABC (đpcm)
bn ơi câu c là chứng minh 3 đường thẳng hàng mà bn
a) Xét ΔDBA và ΔFBC có:
\(\widehat{CBA}:chung\)
\(\widehat{ADB}=\widehat{CFB}\) \(=90^0\)
=> ΔDBA∼ΔFBC (g.g)
\(\Rightarrow\frac{DB}{AB}=\frac{BF}{BC}\)
Xét ΔABC và ΔDBF có:
\(\widehat{CBA}: chung\)
\(\frac{DB}{AB}=\frac{BF}{BC}\) (cmtrn)
=> ΔABC∼ΔDBF (c.g.c)