Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Câu a) Nhầm đề rồi nhé
a) * Áp dụng đlí pytago: \(AB^2+BC^2=AC^2\) . Do ABCD là hình vuông => \(AB=BC\)
=> \(2BC^2=AC^2\)
=> \(BC\sqrt{2}=AC\)(1)
Xét tam giác ADC vuông tại D có DF là đường trung tuyến ứng với cạnh huyền AC
=> \(DF=\frac{1}{2}AC\)
=> \(2DF=AC\)(2)
TỪ (1) VÀ (2) => \(BC\sqrt{2}=2DF\)
=> \(BC=DF\sqrt{2}\)
khó quá man
Qua M kẻ đường thẳng //BC cắt lần lượt AB, CD tại F, G
ta có △MDG=△MAF△MDG=△MAF (g, c, g) (1)
có SABCD=SABCGM+SMDGSABCD=SABCGM+SMDG
=SABCGM+SMAF=SABCGM+SMAF (do (1))
=SBCGF=SBCGF (2)
mà BCGF là hình bình hành nên
SBCGF=BC.MESBCGF=BC.ME (3)
từ (2, 3) =>đpcm