K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2021

1.

\(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều

\(\Rightarrow S_{ABCD}=2S_{ABC}=2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{2}\)

Gọi O là giao điểm 2 đường chéo \(\Rightarrow SO\perp AC\Rightarrow SO\perp\left(ABCD\right)\)

\(SO=\dfrac{AC\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{a^3}{4}\)

NV
14 tháng 5 2021

2.

Gọi M là trung điểm AB \(\Rightarrow SM\perp AB\Rightarrow SM\perp\left(ABCD\right)\)

\(SM=\dfrac{AB\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Áp dụng định lý Pitago cho tam giác vuông MBC:

\(CM^2=BM^2+BC^2=\left(\dfrac{AB}{2}\right)^2+\left(2AB\right)^2=\dfrac{17AB^2}{4}\)

Áp dụng định lý Pitago cho tam giác vuông SMC:

\(SC^2=SM^2+CM^2\Leftrightarrow5a^2=\dfrac{3AB^2}{4}+\dfrac{17AB^2}{4}=5AB^2\)

\(\Rightarrow AB=a\Rightarrow\left\{{}\begin{matrix}AD=2a\\SM=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)

\(V=\dfrac{1}{3}.SM.AB.AD=\dfrac{a^3\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:
Lấy $H$ là trung điểm $AB$ thì do $SAB$ cân tại $S$ nên $SH\perp BH$

$BH$ là giao tuyến của $(SAB), (ABCD)$; (SAB)\perp (ABCD)$ nên $SH\perp (ABCD)$

$\Rightarrow (SC, (ABCD))=(SC, CH)=\widehat{SCH}=45^0$

$\Rightarrow SH=CH=\sqrt{BC^2+BH^2}=\sqrt{(2a)^2+(\frac{a}{2})^2}=\frac{\sqrt{17}}{2}a$
\(V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{17}}{2}a.a.2a=\frac{\sqrt{17}}{3}a^3\)

10 tháng 6 2018

Đáp án B

20 tháng 2 2019

Đáp án A