Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. c)
2. Tam giác ABC vuông tại A
=> ^B + ^C = 900 ( hai góc nhọn phụ nhau )
^B + 500 = 900
=> ^B = 400
3. Tam giác MNP cân tại P => ^M = ^N ( hai góc ở đáy )
mà ^N = 400 => ^M = ^N = 400
Ta có : ^M + ^N + ^P = 1800 ( tổng 3 góc 1 tam giác )
400 + 400 + ^P = 1800
=> ^P = 1000
4. Áp dụng định lí Pytago cho tam giác vuông ABC ta có :
BC2 = AB2 + AC2
=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
LÀM
Câu 1 : Đáp án C , D
Câu 2 : GIẢI
Trong tam giác vuông ABC có : Góc A = 90° , Góc C = 50°
=> Góc B + góc C = 90°
=> Góc B = 90° - góc C
=> Góc B = 90° - 50°
=> Góc B = 40°
Vậy góc B = 40°
Câu 3 : Giải
Trong tam giác MNP cân tại P có :
Góc N = 40° => Góc P = 180° - (40 × 2 )
=> Góc B = 100°
Vậy góc B = 100°
Câu 4 : Giải
Áp dụng định lý Py - ta - go vào tam giác vuông ABC , ta có :
AB^2 + AC^2 = BC^2
=> 3^2 +4^2 = BC^2
=> 9 + 16 = 25
=> BC = 5 (cm )
HÌNH BẠN TỰ VẼ NHÉ.....
HỌC TỐT !
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có
HB=HC(ΔABH=ΔACH)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)
Suy ra: HE=HF(Hai cạnh tương ứng)
a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A
⇒\(\widehat{C}\)=30
MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180
⇒\(\widehat{A}\) + 30+30=180
⇒\(\widehat{A}\)=180-30-30
⇒\(\widehat{A}\)=120
xÉT ΔAHB vuông tại H, ΔAHC vuông tại H
CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)
\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)
⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)
⇒\(\widehat{BAH}=\widehat{CAH}\)
C.TRONG TAM GIÁC AHC VUÔNG TẠI H
⇒\(AC^2=HC^2+AH^2\)
⇒\(AC^2\)=\(4^2\)+\(3^2\)
⇒\(AC^2\)=16+9
AC=\(\sqrt{25}\)=5CM
D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F
CÓ: AH : CẠNH HUYỀN CHUNG
\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)
⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)
⇒HE=HF (2 CẠNH TƯƠNG ỨNG)
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
\(\text{1: Cho \Delta ABC cân tại C, kết luận nào sau đây là đúng?}\)
a. AB=AC b. BA=BC c. CA=CB d. AC=BC
\(\text{2: Tam giác ABC vuông tại A, biết số đo góc C bằng 50^0. Tính số đo góc B}\)
\(\text{Xét tam giác ABC có:}\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) \(\text{ (tổng 3 góc trong một tam giác)}\)
\(\Leftrightarrow90^0+\widehat{B}+50^0=180^0\) \(\widehat{A}=90^0\)\(\text{vì A vuông theo gt}\)
\(\Leftrightarrow\widehat{B}=40^0\)
\(\text{3: Tam giác MNP cân tại P. Biết góc N có số đo = 40^0. Tính số đo góc P}\)
\(\text{3: Tam giác MNP cân tại P}\)
\(\Rightarrow\widehat{M}=\widehat{N}=40^0\)
\(\Rightarrow\widehat{P}=100^0\) \(do\widehat{M}+\widehat{N}+\widehat{P}=180^0\)\(\text{ (tổng 3 góc trong một tam giác)}\)
\(\text{4: Cho tam giác ABC vuông tại A , biết AB = 3cm; biết AC= 4cm. Tính độ dài cạnh BC }\)
\(\text{Theo Pitago cho 1 tam giác vuông, ta có:}\)
\(BC^2=AB^2+AC^2=3^2+4^2=9+16+25\)
\(\Rightarrow BC=5\)