K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\left(\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1-2\sqrt{a}+a-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

b) Để \(P< \dfrac{1}{2}\) thì \(P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\left(\sqrt{a}-1\right)}{2\sqrt{a}}-\dfrac{\sqrt{a}}{2\sqrt{a}}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{a}-2-\sqrt{a}}{2\sqrt{a}}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}-2}{2\sqrt{a}}< 0\)

mà \(2\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-2< 0\)

\(\Leftrightarrow\sqrt{a}< 2\)

hay a<4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)

Vậy: Để \(P< \dfrac{1}{2}\) thì \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)

a: \(P=\dfrac{a+\sqrt{a}+1}{a+1}:\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{a+\sqrt{a}+1}{a+1}:\dfrac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{a+\sqrt{a}+1}{\sqrt{a}-1}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{a+\sqrt{a}+1-\sqrt{a}+1}{\sqrt{a}-1}< 0\)

hay 0<a<1

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Đề bài có vẻ bị lỗi. Bạn xem lại đề. 

a) \(P=\dfrac{1-2\sqrt{a}+a}{1-\sqrt{a}}\cdot\dfrac{1+2\sqrt{a}+a}{1+\sqrt{a}}\) \(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\) \(=1-a\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

Để P>0 \(\Leftrightarrow1-a>0\) \(\Leftrightarrow a< 1\)

  Vậy \(0\le a< 1\)

18 tháng 5 2021

`a)P=((1-asqrta)/(1-sqrta)+sqrta).((1+asqrta)/(1+sqrta)-sqrta)`

`=(((1-sqrta)(a+sqrta+1))/(1-sqrta)+sqrta).(((1+sqrta)(a-sqrta+1))/(1+sqrta)-sqrta)`

`=(a+sqrta+1+sqrta)(a-sqrta+1-sqrta)`

`=(a+2sqrta+1)(a-2sqrta+1)`

`=(sqrta+1)^2(sqrta-1)^2`

`=(a-1)^2`

`b)a<7-4sqrt3`

`<=>(a-1)^2<(2-sqrt3)^2`

`<=>sqrt3-2<a-1<2-sqrt3`

`<=>sqrt3-1<a<3-sqrt3`

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

ĐK: $x>0; a\neq 1; a\neq 4$

a) 

$M=\frac{\sqrt{a}-(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}-1)}:\frac{(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}-2)(\sqrt{a}+2)}{(\sqrt{a}-2)(\sqrt{a}-1)}$

$=\frac{1}{\sqrt{a}(\sqrt{a}-1)}:\frac{3}{(\sqrt{a}-2)(\sqrt{a}-1)}=\frac{1}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-2)(\sqrt{a}-1)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}$

b) 

$M>\frac{-1}{2}\Leftrightarrow \frac{\sqrt{a}-2}{3\sqrt{a}}+\frac{1}{2}>0$

$\Leftrightarrow \frac{5\sqrt{a}-4}{6\sqrt{a}}>0$

$\Leftrightarrow 5\sqrt{a}-4>0$

$\Leftrightarrow a>\frac{16}{25}$

Kết hợp với ĐKXĐ thì $a>\frac{16}{25}; a\neq 1; a\neq 4$

26 tháng 12 2021

a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

27 tháng 12 2021

\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)