K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

mk ko thấy hình ảnh bạn ơi 

11 tháng 11 2021

mình đã đăng lại rồi nhé

 

11 tháng 12 2021

b: Xét tứ giác ABCD có 

AB//CD

AB=CD

Do đó:ABCD là hình bình hành

Suy ra: AD=BC

18 tháng 11 2016

1) Ta có hình vẽ sau:


A B C D 1 2 1 2

Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)

AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)

Xét ΔABC và ΔCDA có:

\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)

AC: Cạnh chung

\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)

\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)

2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)

\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)

3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!

Ta có hình vẽ sau:

A B C F E 1 2

Xét ΔABC và ΔAFE có:

AE = AB (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)

AF = AC (gt)

\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)

18 tháng 11 2016

Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha

 

29 tháng 6 2016

ta có : AB//CD và AD//BC

=> ABCD là hình bình hành

=>theo tính chất hình bình hành thì AB=CD VÀ BD = AD

B) nếu O là giao hai đường chéo thì mới làm dduocj 

theo tính chất hình bình hành thì hai đường chéo giao nhau tại trung điểm mỗi đường 

=> OC=OA và OB=OD

7 tháng 9 2021

câu a sai rồi :v

 

19 tháng 11 2017

10 tháng 1 2018

14 tháng 12 2021

\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)

\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)

Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)

\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)

Mà ME là trung tuyến nên cũng là đường cao

Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)

Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)

Vậy M,E,F thẳng hàng