K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Vì \(\widehat{AOB}=\widehat{BOC}\)( gt )

=> OB là tia phân giác của góc AOC.

Vì \(\widehat{BOC}=\widehat{COD}\)( gt )

=> OC là tia phân giác của góc BOD.

b) Nếu OM là tia phân giác của góc AOD

Thì: \(\widehat{DOM}=\widehat{MOA}\)

Mà \(\widehat{DOM}+\widehat{MOA}=120^0\)

=> \(\widehat{DOM}=\widehat{MOA}=\frac{120^0}{2}=60^0\)

Ta có: \(\widehat{AOB}=\widehat{BOC}=\widehat{COD}=\frac{120^0}{3}=40^0\)

Lại có: \(\widehat{AOB}+\widehat{BOM}=\widehat{MOA}\)

Hay \(40^0+\widehat{BOM}=60^0\)

\(\Rightarrow\widehat{BOM}=60^0-40^0=20^0\)                                (3)

Mặt khác: \(\widehat{COD}+\widehat{MOC}=\widehat{MOD}\)

hay \(40^0+\widehat{MOC}=60^0\)

\(\Rightarrow\widehat{MOC}=60^0-40^0=20^0\)                                 (4)

Từ (3) và (4), ta được: \(\widehat{BOM}=\widehat{MOC}\left(=20^0\right)\)

=> OM là tia phân giác của góc BOC.

Vậy nếu OM là tia phân giác của góc AOD thì OM có là tia phân giác của góc BOC.

# Học tốt #

a) Ta có: \(\widehat{AOB}\) và \(\widehat{BOC}\) là hai góc kề bù(gt)

nên \(\widehat{AOB}+\widehat{BOC}=180^0\)

\(\Leftrightarrow\widehat{AOB}+5\cdot\widehat{AOB}=180^0\)

\(\Leftrightarrow6\cdot\widehat{AOB}=180^0\)

hay \(\widehat{AOB}=30^0\)

Ta có: \(\widehat{BOC}=5\cdot\widehat{AOB}\)(gt)

nên \(\widehat{BOC}=5\cdot30^0\)

hay \(\widehat{BOC}=150^0\)

Vậy: \(\widehat{AOB}=30^0\)\(\widehat{BOC}=150^0\)

b) Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{DOB}< \widehat{BOC}\left(75^0< 150^0\right)\)

nên tia OD nằm giữa hai tia OB và OC

\(\Leftrightarrow\widehat{COD}+\widehat{BOD}=\widehat{COB}\)

\(\Leftrightarrow\widehat{COD}=\widehat{COB}-\widehat{BOD}=150^0-75^0=75^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{COD}< \widehat{COA}\left(75^0< 180^0\right)\) nên tia OD nằm giữa hai tia OC và OA

\(\Leftrightarrow\widehat{COD}+\widehat{AOD}=\widehat{COA}\)

\(\Leftrightarrow\widehat{AOD}=\widehat{COA}-\widehat{COD}=180^0-75^0\)

hay \(\widehat{AOD}=105^0\)

Vậy: \(\widehat{AOD}=105^0\)

4 tháng 2 2021

a) \(\widehat{AOB}\) và \(\widehat{BOC}\) kề bù \(\Rightarrow\widehat{AOB}+\widehat{BOC}=180^0\) mà \(\widehat{BOC}=5\widehat{AOB}\)

\(\Rightarrow\widehat{AOB}+5\widehat{AOB}=180^0\Rightarrow6\widehat{AOB}=180^0\\ \Rightarrow\widehat{AOB}=30^0\Rightarrow\widehat{BOC}=150^0\).

b) Do \(OD\) nằm trong góc \(\widehat{BOC}\) \(\Rightarrow\) tia \(OD\) nằm giữa hai tia \(OB,OC\)

\(\Rightarrow\)tia \(OB\) và tia \(OA\) nằm cùng phía nhau so với tia \(OD\)

\(\Rightarrow\) tia \(OB\) nằm giữa hai tia \(OA,OD\)

\(\Rightarrow\widehat{AOD}=\widehat{AOB}+\widehat{BOD}=30^0+75^0=105^0\).

c) Nếu chỉ xét trường hợp các góc tạo bởi hai tia liên tiếp nhau:

Trên nửa mặt phẳng bờ \(AC\) có \(n+4\) tia (gồm \(4\) tia \(OA,OB,OC,OD\) và \(n\) tia vẽ thêm).

Cứ hai tia cạnh nhau tạo thành 1 góc

\(\Rightarrow\) Ta có \(n+3\) góc.

a) Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOc}< \widehat{aOb}\left(50^0< 120^0\right)\)

nên tia Oc nằm giữa hai tia Oa và Ob

\(\Leftrightarrow\widehat{aOc}+\widehat{bOc}=\widehat{aOb}\)

\(\Leftrightarrow\widehat{bOc}=\widehat{aOb}-\widehat{aOc}=120^0-50^0=70^0\)

Ta có: Om là tia phân giác của \(\widehat{bOc}\)(gt)

nên \(\widehat{bOm}=\dfrac{\widehat{bOc}}{2}=\dfrac{70^0}{2}\)

hay \(\widehat{bOm}=35^0\)

Vậy: \(\widehat{bOm}=35^0\)