Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Ta có: I là đường cao cũng là đường trung tuyến trong tam giác cân ABC
=> I là trung điểm BC
b.
Xét tam giác AEI và tam giác AFI, có:
AE = AF ( gt )
góc EAI = góc FAI ( AI là đường cao cũng là đường phân giác )
AI: cạnh chung
Vậy tam giác AEI = tam giác AFI ( c.g.c )
=> IE = IF ( 2 cạnh tương ứng )
=> Tam giác IEF cân tại I
c.
Ta có: AB = AC ( ABC cân )
Mà AE = AF ( gt )
=> BE = CF
Xét tam giác BEI và tam giác CFI, có:
BE = CF ( cmt )
góc B = góc C ( ABC cân )
IB = IC ( gt )
Vậy tam giác BEI = tam giác CFI ( c.g.c )
Chứng minh câu a
Xét tam giác ABI và tam giác ACI có:
AI cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác ABI = tam giác ACI ( c-g-c )
Suy ra BI = CI
Sửa đề: AI vuông góc với BC
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
mà B,I,C thẳng hàng(gt)
nên I là trung điểm của BC(đpcm)
b) Ta có: ΔAIB=ΔAIC(cmt)
nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
hay \(\widehat{EAI}=\widehat{FAI}\)
Xét ΔEAI và ΔFAI có
AE=AF(gt)
\(\widehat{EAI}=\widehat{FAI}\)(cmt)
AI chung
Do đó: ΔEAI=ΔFAI(c-g-c)
Suy ra: IE=IF(hai cạnh tương ứng)
Xét ΔIEF có IE=IF(cmt)
nên ΔIEF cân tại I(Định nghĩa tam giác cân)
c) Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà AE=AF(gt)
và AB=AC(ΔABC cân tại A)
nên EB=FC
Xét ΔEBI và ΔFCI có
EB=FC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
BI=CI(cmt)
Do đó: ΔEBI=ΔFCI(c-g-c)