Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}u_1=a;u_2=b\\u_{n+2}=\dfrac{1}{2}u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1=a,u_2=b\\u_{n+2}+\dfrac{1}{2}u_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)
\(v_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\Rightarrow\left\{{}\begin{matrix}v_2=u_2+\dfrac{1}{2}u_1=b+\dfrac{1}{2}a\\v_{n+1}=v_n\end{matrix}\right.\)
\(\Rightarrow v_{n+1}=b+\dfrac{1}{2}a\Rightarrow u_{n+1}=b+\dfrac{1}{2}a-\dfrac{1}{2}u_n\)
\(\Leftrightarrow u_{n+1}-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)=-\dfrac{1}{2}\left[u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\right]\)
\(t_n=u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\Rightarrow\left\{{}\begin{matrix}t_1=u_1-\dfrac{1}{3}a-\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\\t_{n+1}=-\dfrac{1}{2}t_n\end{matrix}\right.\)
\(\Rightarrow t_n=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}\Rightarrow u_n=t_n+\dfrac{1}{3}a+\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\)
\(\Rightarrow limun=\lim\limits\left[\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\right]=0\)
À đính chính lại, đáp án ko phải bằng 0 đâu, vầy mới đúng
\(lim\left[\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\right]=\dfrac{1}{3}a+\dfrac{2}{3}b\)
a/ \(u_6=u_1+5d=8\Rightarrow u_1=8-5d\)
\(u_2=u_1+d;u_4=u_1+3d\)
\(\Rightarrow\left\{{}\begin{matrix}u_2=8-5d+d=8-4d\\u_4=8-5d+3d=8-2d\end{matrix}\right.\)
\(\Rightarrow\left(8-4d\right)^2+\left(8-2d\right)^2=16\Rightarrow...\)
b/ Câu này làm theo ý hiểu thôi, ko chắc đâu
\(Xet-S_n:\)
\(u_1=u_1\)
\(u_2=u_1+d\)
\(u_3=u_1+2d\)
......
\(u_n=u_1+\left(n-1\right)d\)
\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1+\left(n-1\right)d=n.u_1+d+2d+....+\left(n-1\right)d\)
\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)
Tương tụ với S(2n)
\(S_{2n}=u_1+u_2+...+u_{2n}=u_1+u_1+d+....+u_1+\left(2n-1\right)d\)
\(=2n.u_1+d+2d+...+\left(2n-1\right)d=2n.u_1+\left(1+2+...+\left(2n-1\right)\right)d=2n.u_1+d.n\left(2n-2\right)=2n\left(u_1+\left(n-1\right).d\right)\)
\(4S_n=S_{2n}\Leftrightarrow4.\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}=2n\left(u_1+\left(n-1\right).d\right)\)
\(\Leftrightarrow2n\left[2u_1+\left(n-1\right)d\right]=2n\left[u_1+\left(n-1\right)d\right]\)\(\Leftrightarrow2u_1=u_1\Rightarrow u_1=0\)
\(u_5=u_1+4d=18\Rightarrow d=\dfrac{18}{4}=4,5\)
Ok check lại số má hộ tui nhó
3: Ta có \(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}-1\).
Do đó \(\dfrac{1}{u_{100}}=\dfrac{1}{u_{99}}-1=\dfrac{1}{u_{98}}-2=...=\dfrac{1}{u_1}-99=\dfrac{1}{-2}-99=\dfrac{-199}{2}\Rightarrow u_{100}=\dfrac{-2}{199}\).