K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

dễ lắm hải ơi

23 tháng 11 2018

em vừa hỏi cô Huyền xong , đơn giản cực

11 tháng 4 2017

\(S=1010+1010^2+1010^3+...+1010^{1011}\)

Suy ra \(1010.S=1010^2+1010^3+1010^4+....+1010^{1012}\)

Nên\(1010.S-S=1010^{1012}-1010\)hay\(1009.S=1010^{1012}-1010\)

Khi đó \(S=\frac{1010^{1012}-1010}{1009}\)

12 tháng 4 2017

S=1011+1010^2+1010^3+...+1010^1011

S=1+1010+1010^2+1010^3+...+1010^1011

1010.S=1010+1010^2+1010^3+1010^4+...+1010^1012

1010 S - S=1010^1012-1

1009 S=1010^1012-1

S=(1010^1012-1):1009

Bạn có thể viết lại đề theo phân số như thế này được không \(\frac{7}{12}\)bạn viết thế mk ko hiểu

Bn viết lại đề nhanh mk làm cho

Chúc bn học tốt

7 tháng 3 2020

i am Chịu!!!!!

25 tháng 3 2018

giúp mình lun nha mình đang cần gấp...mình k cho

14 tháng 5 2018

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\)

\(\Rightarrow A=B\left(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow\frac{A}{B^{2018}}=\frac{A}{A.B^{2017}}=\frac{1}{B^{2017}}\)

=> \(\frac{A}{B^{2018}}=\frac{1}{\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)^{2017}}\)